设z=1 yf(xy)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 22:55:55
设z=1 yf(xy)
z=yf(xy,2x+y),f有二阶连续偏导数,求аz/аx,аz/аy,аz/аxаy

dz/dx=y(yf1'+2f2')dz/dy=f(xy,2x+y)++y(xf1'+f2')da/dxdy=(yf1'+2f2')+y【f1'+y(xf1'+f2')+2(xf1'+f2')】=2y

设X~N(0,1),Χ^2(5),XY相互独立,令Z=X/Y/5则Z=

第一个无过程,就是考察t分布的定义,这里结果是t(5);第二个也可以说是无过程,考察的是二项分布的数字特征及矩估计方法(替换原理)这两个常识.对于X服从B(n,p)来说,其期望为EX=np,方差为DX

设函数z=yf(x/y)+xg(y/x),求 X×(z的x的二阶偏导)+Y×(z的x,y的混合偏导)

z对x的一阶偏导:yf′(x/y)·1/y+g(y/x)+xg′(y/x)·(-y/x^2)=f′(x/y)+g(y/x)-(y/x)·g′(y/x)z对x的二阶偏导:f′′(x/y)/y-(y/x^

设z=z(x,y)是由方程e^(-xy)+2z-e^z=2确定 求dz|(x=2,y=-1/2)

对方程e^(-xy)+2z-e^z=2两边微分,有:e^(-xy)*d(-xy)+2*dz-e^z*dz=0-e^(-xy)*(x*dy+y*dx)+2*dz-e^z*dz=0移项,得:(e^z-2)

定义集合运算:A×B={Z/Z=XY,X∈A,Y∈B,}设A={1

A*B的元素有1*0=01*2=22*0=02*2=4即有3个元素:0,2,4则所有元素之和为6

设z=xf(y/x)+2yf(x/y),f具有二阶连续导数且δ²z/δxδy|x=a值为-by²,a

过程有点多我就说下大概的步骤吧1.求完偏导后方程两边同时对Y积分,得-y/a*f'(y/a)+f(y/a)+2f'(a/y)=-y^3/a^3+c2.令y/a=x,上式两边同时除以-x^2后对X积分,

设f (x)在(0,+∞)内有定义,f′(1)=2,又对于任意的x,y∈(0,+∞)恒有f(xy)=yf(x)+xf(y

令x=y=1得f(1)=0令y=1/x得0=f(x)/x+xf(1/x)所以f(1/x)=-f(x)/x^2对x求导得yf'(xy)=yf'(x)+f(y)令y=1/x得f'(1)/x=f'(x)/x

设f(x)在(0~正无穷)有定义,且f '(1)=1,对任意x,y,恒有f(xy)=yf(x)+f(y),求 f(x)?

对任意x,y,恒有f(xy)=yf(x)+f(y),则令y=1代入得:f(x)=f(x)+f(1)得到:f(1)=0对f(xy)=yf(x)+f(y),两边求关于y的导,可得:xf'(xy)=f(x)

设实数x,y,z满足x+y=z-1,且xy=z²-7x+14 ,试求z的最大值和最小值

∵x+y=z-1,xy=z²-7z+14.由韦达定理可知,x,y是关于a的一元二次方程a²-(z-1)a+(z²-7z+14)=0的两个实数根.故△=(z-1)²

高等数学高数多元函数微分学:设z=z(x,y)是由方程 x^2+y^2+z^2=yf(z/y)所决定的隐函数,f具有连续

这个你得把题目拍上来.不然不好做.要凑.主要是你证明的那句话不好看懂

设x,y,z∈R+,xy+yz+xz=1,证明不等式:(xy)^2/z+(xz)^2/y+(yz)^2/x+6xyz≥x

左式可化为[(xy)^3+(xz)^3+(yz)^3]/xyz+6xyz;然后[(xy)^3+(xz)^3+(yz)^3]/xyz>=3xyz(这一步是将分子利用(a+b+c)>=3*(abc)^(1

设函数f(x)对一切实数x,y满足f(xy)=xf(y)+yf(x)-xy且|f(x)-x|≤1,求函数f(x).

令g(x)=f(x)-xg(xy)+xy=x(g(y)+y)+y(g(x)+x)-xyg(xy)=xg(y)+yg(x)令x=0,g(0)=yg(0),g(0)=0若存在|a|>=1使得g(a)不等于

f(xy)=xf(y)+yf(x) 求f(x)

挺好的题f(xy)=xf(y)+yf(x)---(1)设y=c=常量则:f(cx)=cf(x)+f(c)x两边求导数f'(cx)*c=cf'(x)+f(c)cf'(cx)-cf'(x)=f(c)此式对

设函数z=xyln(xy),求全微分dz

dz=[yIn(xy)+y]dx+[xIn(xy)+x]dy分开求导

设由方程x-z-yf(z)=0所确定的隐函数g(x,y),其中f可导,求dz/dx dz/dy

经济数学团队帮你解答,有不清楚请追问.请及时评价.

设f(x,y,z)可微,对一切t不等于0,有f(tx,ty,tz)=tf(x,y,z),试证:xf'(x)+yf'(y)

这个叫欧拉公式(顺便说一下,你那个式子右边的t应该是少了个n次方),证明可以两边对t求偏导再令t=1得到,只要你会基本的微积分的话……

设z=z(x,y)是由方程x=zf(y/x)确定的隐函数,其中f(u)具有连续的导数,且x-yf'(y/...

因为(偏导z/偏导x)=(1+z(x,y)*f‘(y/x)*y/x^2)/f(y/x)(偏导z/偏导y)=-(z(x,y)*f‘(y/x))/(x*f(y/x))所以x(偏导z/偏导x)+y(偏导z/

设x+z=yf(x²-z²),其中f具有连续导数,求z(∂z/∂x)+y(&

x+z=yf(x²-z²)1+∂z/∂x=yf’(x²-z²)(2x-2z(∂z/∂x))∂z/&#

设Z=x²+2xy,求dz

z=x^2+2xy两边同时求导数,得到:dz=2xdx+2ydx+2xdy即:dz=2(x+y)dx+2xdy.