设f(x)在(0~正无穷)有定义,且f '(1)=1,对任意x,y,恒有f(xy)=yf(x)+f(y),求 f(x)?
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 08:52:36
设f(x)在(0~正无穷)有定义,且f '(1)=1,对任意x,y,恒有f(xy)=yf(x)+f(y),求 f(x)?
对任意x,y,恒有f(xy)=yf(x)+f(y),则令y=1代入得:
f(x)=f(x)+f(1)
得到:f(1)=0
对f(xy)=yf(x)+f(y),两边求关于y的导,可得:xf'(xy)=f(x)+f'(y)
令y=1可得:
xf'(x)=f(x)+1
可得:f'(x)=[f(x)+1 ]/x……(1)
根据概念f'(x)=[f(x)—f(1)]/(x—1)=f(x)/(x-1)……(2)
联立(1)(2)可得:f(x)=x-1
f(x)=f(x)+f(1)
得到:f(1)=0
对f(xy)=yf(x)+f(y),两边求关于y的导,可得:xf'(xy)=f(x)+f'(y)
令y=1可得:
xf'(x)=f(x)+1
可得:f'(x)=[f(x)+1 ]/x……(1)
根据概念f'(x)=[f(x)—f(1)]/(x—1)=f(x)/(x-1)……(2)
联立(1)(2)可得:f(x)=x-1
设f(x)在(0~正无穷)有定义,且f '(1)=1,对任意x,y,恒有f(xy)=yf(x)+f(y),求 f(x)?
已知定义在(0,正无穷)上的函数Y,对任意x,y属于正实数时,恒有f(xy)=f(x)+f(y).(1) 求f(1).
设单调递增函数f(x)的定义域为(0,正无穷),且对任意得正实数x.y有f(xy)=f(x)+f(y)且f(1/2)=-
设f(x)是定义域(0,正无穷)上的单调递增函数,且对定义域内任意x,y都有f(xy)=f(x)+f
函数f(x)定义在区间(0,正无穷)上,且对任意的x∈正实数,y∈实数,都有f(x^y)=yf(x)
设f(x)是定义在(0,+∞)的单调递增函数,且对定义域内任意x,y,都有f(xy)=f(x)f(y),f(2)=1,求
f(x)是定义域在负无穷大到正无穷大上的不恒为0的函数且定义域内的任意X,Y有f(xy)=yf(x)+xf(y)求f(1
定义在区间(0,正无穷)上的函数f(x)满足对任意实数x.y有f(x^y)=yf(x)
设函数f(x)满足f(0)=1,且对任意x,y属于R,都有f(xy+1)=f(x)乘f(y)减f(y)减x加2.求f(x
设f (x )定义在R上的函数,且对任意x,y∈R,恒有f(x+y)=f(x)f(y),且x>0时,f(x)>1证明:
关于单调性的数学题,已知定义在(0,正无穷)上的函数f(x)对任意x,y(0,正无穷)恒有f(xy)=f(x)+f(y)
已知定义在(0,正无穷)上的函数f(x)对任意x,y属于(0,正无穷),恒有f(xy)=f(x)+f(y),