f(xy)=xf(y)+yf(x) 求f(x)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 10:31:08
f(xy)=xf(y)+yf(x) 求f(x)
任取x y∈R
任取x y∈R
挺好的题
f(xy)=xf(y)+yf(x) --- (1)
设y=c=常量
则:f(cx)=cf(x)+f(c)x
两边求导数
f'(cx)*c=cf'(x)+f(c)
cf'(cx)-cf'(x)=f(c)
此式对任意x成立,所以,我们取x=1
则:cf'(c)-cf'(1)=f(c)
此式对任意c成立,所以c可以看做变量,而f'(1)总是个定值
我们取c为x
则:xf'(x)-f'(1)x=f(x)
f'(x)-[f(x)/x]=f'(1) ---(2)
令f'(x)-[f(x)/x]=0
则:df(x)/f(x)=dx/x
lnf(x)=lnx+c1
f(x)=cx
其中c可以看做是x的函数,
所以,令f(x)=x*u(x),代入(2)得:
(u+xu')-u=f'(1)
u'=f'(1)/x
u=f'(1)ln|x|+m,m为常量
所以:f(x)=(f'(1)ln|x|+m)x
当x>0,则:f(x)=(f'(1)lnx+m)x
f'(x)=f'(1)lnx+m+f'(1)
所以:f'(1)=m+f'(1)
m=0
f'(1)可以取任意定值,所以我们把它记作c,c为任意常量
则:f(x)=cxln|x|,此式的定义域为:x不等于0,
将它带回方程(1),方程(1)成立,
所以,f(x)=cxln|x|,是在x不等于0时方程(1)的解
再回头看方程(1)
当x=0,y=0
则得:f(0)=0
总结以上得:
当x不等于0时,f(x)=cxln|x|,c为任意常量
当x=0时,f(x)=0
f(xy)=xf(y)+yf(x) --- (1)
设y=c=常量
则:f(cx)=cf(x)+f(c)x
两边求导数
f'(cx)*c=cf'(x)+f(c)
cf'(cx)-cf'(x)=f(c)
此式对任意x成立,所以,我们取x=1
则:cf'(c)-cf'(1)=f(c)
此式对任意c成立,所以c可以看做变量,而f'(1)总是个定值
我们取c为x
则:xf'(x)-f'(1)x=f(x)
f'(x)-[f(x)/x]=f'(1) ---(2)
令f'(x)-[f(x)/x]=0
则:df(x)/f(x)=dx/x
lnf(x)=lnx+c1
f(x)=cx
其中c可以看做是x的函数,
所以,令f(x)=x*u(x),代入(2)得:
(u+xu')-u=f'(1)
u'=f'(1)/x
u=f'(1)ln|x|+m,m为常量
所以:f(x)=(f'(1)ln|x|+m)x
当x>0,则:f(x)=(f'(1)lnx+m)x
f'(x)=f'(1)lnx+m+f'(1)
所以:f'(1)=m+f'(1)
m=0
f'(1)可以取任意定值,所以我们把它记作c,c为任意常量
则:f(x)=cxln|x|,此式的定义域为:x不等于0,
将它带回方程(1),方程(1)成立,
所以,f(x)=cxln|x|,是在x不等于0时方程(1)的解
再回头看方程(1)
当x=0,y=0
则得:f(0)=0
总结以上得:
当x不等于0时,f(x)=cxln|x|,c为任意常量
当x=0时,f(x)=0
f(xy)=xf(y)+yf(x) 求f(x)
设函数f(x)对一切实数x,y满足f(xy)=xf(y)+yf(x)-xy且|f(x)-x|≤1,求函数f(x).
诺y=f(x)[0+无穷]上是增函数,f(xy)=xf(y)+yf(x),且满足f(x)+f(x-1/2)
一道高数题,求高手指教.f(x)在x>0有定义,在x=1处可导,f(xy)=yf(x)+xf(y).证明f'(x)在x>
f(x)是定义域在负无穷大到正无穷大上的不恒为0的函数且定义域内的任意X,Y有f(xy)=yf(x)+xf(y)求f(1
1.已知f(x)满足f(1)=1且对任意实数x.y都有f(x+y)=xf(y)+yf(x)+2xy成立,则f(n)=?
定义在R上的函数f(x) 满足对任意实数x,y 均有xf(y)+yf(x)=(x+y)f(x)f(y) 求f(x)
已知f(x)是定义在R上的不恒为0的函数,且对于任意的x,y属于R,有f(xy)=xf(y)+yf(x),若y=f(x)
已知f(x)是定义在R上的不恒为零的函数,且对任意x,y,f(x)都满足f(xy)=yf(x)+xf(y).
已知f(x)是定义在R上的不恒为零的函数,且对定义域内的任意x、y,f(x)都满足f(xy)=yf(x)+xf(y)
设f (x)在(0,+∞)内有定义,f′(1)=2,又对于任意的x,y∈(0,+∞)恒有f(xy)=yf(x)+xf(y
对于函数f(X)定义在R上恒不为0,f(xy)=xf(y)+yf(x) (1)f(o),f(1)的值 (2)判断奇偶性