行列式不为零 向量线性无关
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:28:53
证:由已知,α1,α2,α3,α4线性相关所以存在一组不全为0的数k1,k2,k3,k4,使得k1α1+k2α2+k3α3+k4α4=0.(下证k1,k2,k3,k4全不为0)假设k1=0.则k2α2
设A的列向量组为a1,a2,...,an矩阵A的行列式|A|=0AX=0有非零解存在不全为0的一组数x1,x2,...,xn使得x1a1+x2a2+...+xnan=0a1,a2,...,an线性相关
首先,这种方法只对n个n维向量有效n个n维向量线性无关的充分必要条件是它们构成的行列式不等于0.
(b1,b2,b3)=(a1,a2,a3)KK=101220033因为|K|=12≠0所以K可逆所以r(b1,b2,b3)=r(a1,a2,a3)=3所以b1,b2,b3线性无关.怎么让证线性相关呢?
秩为r的向量组中任意r向量当然不一定是极大无关组因为极大无关组首先要满足线性无关线性相关的部分组一定不是极大无关组再问:那由同一个极大线性无关组线性表示的两个向量可能线性无关吗?再答:可能呀再问:β1
k1*a1+k2(a1+a2)+k3(a1+a2+a3)+...+ks(a1+a2+...+as)=(k1+k2+..+ks)a1+(k2+k3+...+ks)a2+...+ks*as=0因为a1,a
可参考:http://zhidao.baidu.com/question/280278707.html
向量组线性相关时,a向量只能为零,也就是只有当a向量为零向量时,才可以表示其他向量,线性无关的情况和这个类似.
是最大线性无关组中向量的个数
行向量线性相关,列向量也线性相关,二者都相关!因为经过初等行、列变换,一定能使某两行,某两列对应成比例!故二者都相关!
反证法若相关,则存在x,y,z不全为0使得x(a1+a2)+y(a2+a3)+z(a3+a1)=0此即(x+y)a2+(x+z)a1+(y+z)a3=0若x,y,z不全为0,则x+y,y+z,x+z不
四个向量都是三维列向量,所以四个向量组成的向量组a1,a2,a1,a2一定线性相关,所以存在不全为零的实数x1,x2,y1,y2,使得x1a1+x2a2-y1b1-y2b2=0,所以x1a1+x2a2
明白LZ的意思.是想问为什么R(A)=R(ATA),即A的秩等于ATA的秩是吧.我来证明一下这个命题.构造两个齐次线性方程组:(1)Ax=0,(2)(ATA)x=0如果这两个方程组同解,则两个方程组的
a1,a2,a3应该都是3维向量吧,否则不存在/a1,a2,a3/行列式这么一说.那么a1,a2,a3是否线性无关,看是否存在不全为0的实数k1,k2,k3使得k1*a1+k2*a2+k3*a3=0,
1)构造矩阵后,通过行变换变成阶梯矩阵,阶梯矩阵可以告诉你变换后的向量哪几个是极大线性无关的2)这几个向量所在的位置就是原来极大线性无关组3)极大线性无关组往往有多组,但是从来没有必要找出其他的线性无
第6题选D,课本书上的定义,前面三个都可以举出反例.7题选c吧,一个矩阵乘以可逆阵,不改变其秩.即r=r18题选A,主要看特解,只有A中(b1+b2)/2是AX=b的特解.
齐次线性方程AX=0(1)可以看做关于A(m*n)的列向量a1,a2,……,an的方程ajxj=0(j=1,2,……,n)(2)列向量aj=(a1j,a2j,……,amj)^T(1)和(2)是同解方程
一个矩阵值行列式值为为0,它必然是方阵,由克莱姆法则知方程Ax=0若|A|=0,则该方程有非0解,则存在不全为0的k1,k2,k3...kn使得a1*k1加a2*k2加.an*kn=0,(其中a1,a
A是对的,因为矩阵的行秩=列秩,这个问题里列秩当然=m,必然有m个线性无关的列向量了.矩阵行秩=列秩是因为,初等变换不改变矩阵的秩,然后矩阵可以经初等变换化为标准形,矩阵的秩就是标准形里面1的个数,所
n个n维向量线性无关,说明这n个n维向量的秩为n(n个极大线性无关组)既然满秩,那就意味着对应行列式为0!