设椭圆方程为X^2+Y^2/4=1.过点M(0.1)的直线L交椭圆于点A,B两点,O为坐标原点,P满足OP向量=1/2(
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 00:35:11
设椭圆方程为X^2+Y^2/4=1.过点M(0.1)的直线L交椭圆于点A,B两点,O为坐标原点,P满足OP向量=1/2(OA向量+OB向量),N(1/2,1/2)当L绕M旋转时,求
(1)动点P的轨迹方程
(2)求|NP|的最大值和最小值
(1)动点P的轨迹方程
(2)求|NP|的最大值和最小值
(1).
直线L过M(0,1)
当直线L⊥x轴时:OA+OB=0,则OP=0,则P点为原点(0,0)
当直线L不垂直x轴时:设L斜率为k,则直线L方程为:y=kx+1
联立椭圆4x²+y²=4和直线y=kx+1,得:
4x²+k²x²+1+2kx=4,即(k²+4)x²+2kx-3=0
则x1+x2=-2k/(k²+4)
则y1+y2=(kx1+1)+(kx2+1)=k(x1+x2)+2=-2k²/(k²+4)+2=8/(k²+4)
OA=(x1,y1),OB=(x2,y2),则OA+OB=(x1+x2,y1+y2)=(-2k/(k²+4),8/(k²+4))
则OP=1/2(OA+OB)=(-k/(k²+4),4/(k²+4))
即P点坐标为(-k/(k²+4),4/(k²+4))
令x=-k/(k²+4),y=4/(k²+4)
.(思路:利用x/y=-k/4,x/(y-1)=1/k求解此参数方程,当然这里忽略了y=0和y=1,不过将前面的除法变成乘法就可以避免这个问题,之所以没有变,是为了让你了解如何解此参数方程,此过程不必写在解题过程中)
得:4x²+y²-y=0,即x²/(1/4)²+(y-1/2)²/(1/2)²=1
此方程为中心在(0,1/2),长轴为1,短轴为1/2,交点在y轴的椭圆
动点P的轨迹方程为x²/(1/4)²+(y-1/2)²/(1/2)²=1
.(此处判断不出椭圆也没关系,答案写4x²+y²-y=0依然算解答完毕)
(2).P点轨迹的参数方程为:x=1/4cosθ,y=1/2+1/2sinθ
则|PN|²=(x-1/2)²+(y-1/2)²
=(1/4cosθ-1/2)²+(1/2sinθ)²
=1/16cos²θ+1/4-1/4cosθ+1/4-1/4cos²θ .此处利用了sin²θ=1-cos²θ
=-3/16cos²θ-1/4cosθ+1/2
=-3/16(cos²θ+4/3cosθ)+1/2
=-3/16(cosθ+2/3)²+7/12
∵cosθ∈[-1,1]
则cosθ+2/3∈[-1/3,5/3]
则(cosθ+2/3)²∈[0,25/9]
则-3/16(cosθ+2/3)²∈[-25/48,0]
则-3/16(cosθ+2/3)²+7/12∈[1/16,7/12]
即|PN|²∈[1/16,7/12]
则|PN|∈[1/4,√21/6]
即|NP|的最大值为√21/6,最小值为1/4
直线L过M(0,1)
当直线L⊥x轴时:OA+OB=0,则OP=0,则P点为原点(0,0)
当直线L不垂直x轴时:设L斜率为k,则直线L方程为:y=kx+1
联立椭圆4x²+y²=4和直线y=kx+1,得:
4x²+k²x²+1+2kx=4,即(k²+4)x²+2kx-3=0
则x1+x2=-2k/(k²+4)
则y1+y2=(kx1+1)+(kx2+1)=k(x1+x2)+2=-2k²/(k²+4)+2=8/(k²+4)
OA=(x1,y1),OB=(x2,y2),则OA+OB=(x1+x2,y1+y2)=(-2k/(k²+4),8/(k²+4))
则OP=1/2(OA+OB)=(-k/(k²+4),4/(k²+4))
即P点坐标为(-k/(k²+4),4/(k²+4))
令x=-k/(k²+4),y=4/(k²+4)
.(思路:利用x/y=-k/4,x/(y-1)=1/k求解此参数方程,当然这里忽略了y=0和y=1,不过将前面的除法变成乘法就可以避免这个问题,之所以没有变,是为了让你了解如何解此参数方程,此过程不必写在解题过程中)
得:4x²+y²-y=0,即x²/(1/4)²+(y-1/2)²/(1/2)²=1
此方程为中心在(0,1/2),长轴为1,短轴为1/2,交点在y轴的椭圆
动点P的轨迹方程为x²/(1/4)²+(y-1/2)²/(1/2)²=1
.(此处判断不出椭圆也没关系,答案写4x²+y²-y=0依然算解答完毕)
(2).P点轨迹的参数方程为:x=1/4cosθ,y=1/2+1/2sinθ
则|PN|²=(x-1/2)²+(y-1/2)²
=(1/4cosθ-1/2)²+(1/2sinθ)²
=1/16cos²θ+1/4-1/4cosθ+1/4-1/4cos²θ .此处利用了sin²θ=1-cos²θ
=-3/16cos²θ-1/4cosθ+1/2
=-3/16(cos²θ+4/3cosθ)+1/2
=-3/16(cosθ+2/3)²+7/12
∵cosθ∈[-1,1]
则cosθ+2/3∈[-1/3,5/3]
则(cosθ+2/3)²∈[0,25/9]
则-3/16(cosθ+2/3)²∈[-25/48,0]
则-3/16(cosθ+2/3)²+7/12∈[1/16,7/12]
即|PN|²∈[1/16,7/12]
则|PN|∈[1/4,√21/6]
即|NP|的最大值为√21/6,最小值为1/4
设椭圆方程为X^2+Y^2/4=1.过点M(0.1)的直线L交椭圆于点A,B两点,O为坐标原点,P满足OP向量=1/2(
设椭圆方程为(y^2)/4+x^2=1,过点M(0,1)的直线L交椭圆于点A,B,O是坐标原点,点P满足OP=1/2(O
设椭圆方程为(x^2)+(y^2)/4=1,过点M(0,1)的直线l交椭圆于A、B;O是坐标原点,点P满足OP→=1/2
设椭圆方程为X^2+Y^2/4=1.过点M(0.1)的直线L交椭圆于点A,B两点,O为坐标原点,
设椭圆的方程为X平方+Y平方/4=1,过M(0,1)的直线交椭圆于AB两点,O为坐标原点,OP向量=1/2(OA向量+O
设椭圆方程为 x2+y24=1,求点M(0,1)的直线l交椭圆于点A、B,O为坐标原点,点P满足 op
设椭圆方程为x2+y2/4=1,过点M(0,1)的直线L交椭圆于点A,B,O是坐标原点,点P满足
已知椭圆C:X^2/2+Y^2=1.若过点M(2,0)的直线与椭圆C交于两点A、B,设P为椭圆上一点,且满足向量OA+向
设P为椭圆x^2/4+y^2=1上的任意一点,O为坐标原点,F为椭圆的左焦点,点M满足向量OM=1/29(向量OP+向量
已知椭圆x^2/4+y^2/2=1,过F1的直线l与椭圆C交于A,B两点,若椭圆C上存在点P,使得向量OP=向量OA+向
已知椭圆x^2/2+y^2=1的右焦点F,O为坐标原点,过F的直线l交椭圆于A、B两点
已知椭圆x^2/2+y^2=1的左焦点为F,O为坐标原点,设过点F且不与坐标轴垂直的直线交椭圆于A.B两点