作业帮 > 综合 > 作业

如图,在四边形ABCD中,∠ABC=30°,∠ADC =60°,AD=CD,证明:BD²

来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/13 23:01:37
如图,在四边形ABCD中,∠ABC=30°,∠ADC =60°,AD=CD,证明:BD²
如图,在四边形ABCD中,∠ABC=30°,∠ADC =60°,AD=CD,证明:BD²=AB²+BC²
如图,在四边形ABCD中,∠ABC=30°,∠ADC =60°,AD=CD,证明:BD²
如图,∵DA=DC,∠ADC=60°,
∴将△BCD绕点D逆时针转60°得△EAD,
∴AE=CB,ED=BD,∠EDA=∠BDC,∠DEA=∠DBC,
∴∠EDB=∠ADC=60°,
∴△BDE是正△,∴BE=BD,
∵∠DEA+∠DBA=∠CBD+∠DBA=30°,∠EDA+∠BDA=60°,
∴∠DAE+∠DAB=180*2-(∠DEA+∠DBA)-(∠EDA+∠BDA)=270°
∴∠EAB=90°,
∴AE²+AB²=BE²
∴BD²=BA²+BC² 再答:
再问: 你确定我说的和你的是一道题么
再答: 是啊