谁能将导数的公式与微积分联系起来?f(x +dx)-f(x)=f ' (x)*dx 意义
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 10:44:59
谁能将导数的公式与微积分联系起来?f(x +dx)-f(x)=f ' (x)*dx 意义
解答:
dx : x的无穷小的增量.
f(x): 在x位置上的函数值.
f(x+dx): 在x+dx位置上的函数值.
f‘(x): 函数f(x)的导函数,也是函数在x的位置上,函数的切线的斜率.
f(x+dx)-f(x):从x的位置变化到x+dx位置(无穷小的增加量),而引起的函数值
的无穷小的增加量.
f'(x)dx: 用函数上某点的导数,也就是某点的斜率,横坐标增加dx时,所引起
的函数值的变化量,也就是函数值的无限小的增量.
f(x+dx)-f(x)=f'(x)dx的整体意义:
1、原本这是导数f'(x)的定义式:
f'(x) = [f(x+dx)-f(x)]/dx 在平时的教科书上是用极限表示的,
在用极限表示时,dx要写成△x.
2、写成上式的形式时,表示函数的增量是由导函数乘以自变量的无穷小增量直接决定的.
这就给工程上、实验科学上的误差分析提供了理论依据,△f = f‘(x)△x,这样就可以估
计误差了.
3、同时,也给理论上估计提供了一个方法:f(x+dx)=f(x)+f'(x)dx.
例如:根号25.12 = 根号25 + (½)[1/根号25]×0.12 = 5.012 (准确值5.0119856)
4、进而给牛顿近似计算法、级数展开提供了理论基础.
看得出,楼主是在用心读书,而不是像绝大部分的学生那样凑热闹.绝大部分学生,包括
很多数学教师,只是死死记住公式,就以为懂了、理解了,而不去深究概念的内在含义,
不去追究概念、公式的意义何在.他们以为只要会计算了几道题,就懂了公式的意义.可喜
的是,楼主在深究其含义,在make sense!
若有问题,请Hi我,欢迎前来讨论.
dx : x的无穷小的增量.
f(x): 在x位置上的函数值.
f(x+dx): 在x+dx位置上的函数值.
f‘(x): 函数f(x)的导函数,也是函数在x的位置上,函数的切线的斜率.
f(x+dx)-f(x):从x的位置变化到x+dx位置(无穷小的增加量),而引起的函数值
的无穷小的增加量.
f'(x)dx: 用函数上某点的导数,也就是某点的斜率,横坐标增加dx时,所引起
的函数值的变化量,也就是函数值的无限小的增量.
f(x+dx)-f(x)=f'(x)dx的整体意义:
1、原本这是导数f'(x)的定义式:
f'(x) = [f(x+dx)-f(x)]/dx 在平时的教科书上是用极限表示的,
在用极限表示时,dx要写成△x.
2、写成上式的形式时,表示函数的增量是由导函数乘以自变量的无穷小增量直接决定的.
这就给工程上、实验科学上的误差分析提供了理论依据,△f = f‘(x)△x,这样就可以估
计误差了.
3、同时,也给理论上估计提供了一个方法:f(x+dx)=f(x)+f'(x)dx.
例如:根号25.12 = 根号25 + (½)[1/根号25]×0.12 = 5.012 (准确值5.0119856)
4、进而给牛顿近似计算法、级数展开提供了理论基础.
看得出,楼主是在用心读书,而不是像绝大部分的学生那样凑热闹.绝大部分学生,包括
很多数学教师,只是死死记住公式,就以为懂了、理解了,而不去深究概念的内在含义,
不去追究概念、公式的意义何在.他们以为只要会计算了几道题,就懂了公式的意义.可喜
的是,楼主在深究其含义,在make sense!
若有问题,请Hi我,欢迎前来讨论.
谁能将导数的公式与微积分联系起来?f(x +dx)-f(x)=f ' (x)*dx 意义
微积分公式f(x)=dy/dx中的d是什么意思?
求(∫f'(x)dx)'的导数
∫f(x)dx的导数是f(x)还是f(x)dx?
∫ (x~x)f(x)dx的导数是不是就是f(x)?就是上下限相同的
积分符号f'(x)dx=?
求参数方程所确定的函数y=f(x)的导数dy/dx
设f(x)可导.且f(x)导数>0,f(0)=0,f(a)=b,g(x)是f(X)的反函数,求∫f(x)dx(上a下o)
设y=f(根号lnx),已知dy/dx=1/(2x^2*根号lnx),求f'(x),即f(x)的导数.
设f(X)的导数=arctan(x-1)^2,f(0)=0,求不定积分(0,1)f(X)dx求详解
设f(x)=e^(-x),则∫[f(lnx)的导数/x]dx=?
f(x)的一阶导数 f ′(X)连续,则∫xf ′(X)dx=