求维数:线性空间Pn中,满足a1+2a2+3a3+...+nan=0的全体向量(a1,a2,...an)构成的子空间的维
求维数:线性空间Pn中,满足a1+2a2+3a3+...+nan=0的全体向量(a1,a2,...an)构成的子空间的维
在N维线性空间Pn中,下列N维向量的集合V,是否构成P上的线性空间:V={x=(a1,a2…an)|Ax=0,A∈Pm*
向量组:a1=(1,-1,0),a2=(2,1,3),a3=(3,1,2)证明a1,a2,a3是3维向量空间R3的子空间
已知向量组a1,a2,a3线性无关,则下列向量组中线性无关的是 Aa1,3a3,a1,-2a2 Ba1+a2,a2-a3
设n维向量组a1,a2,a3线性无关,判断a1+2a2,2a2+3a3,a1+2a2+3a3的相关性
已知向量组a1,a2,a3线性无关,判断2a1+3a2,a2-3a3,a1+a2+a3的线性相关性
若向量a1,a2线性无关,而a1,a2,a3线性相关,则向量组a1,2a2,3a3的极大线性无关组为
设矩阵A=(a1,a2,a3)其中a2,a3线性无关,a1+2a2-a3=0,向量β=a1+2a2+3a3则Ax=β的通
3维线性空间变换p在基a1,a2,a3下的矩阵式是A1 0 0 0 3 1 2 1 2 求线性变换p在基a3,a1,a2
【速求解】设a1,a2,a3是三维向量空间R3的基,b1=2a1+3a2+33,b2=2a1+a2+2a3,b3=a1+
若a1,a2线性无关,而a1,a2,a3线性相关,求向量组a1,2a2,3a3的极大无关组
设a1,a2...an是n维线性空间的一组基,b1,b2...,bs是V的一组向量