不可逆矩阵行列式等于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:59:25
不可逆矩阵行列式等于
已知A为奇数阶矩阵,行列式大于0,A×(A的转置)等于单位矩阵,证明单位矩阵减去A不可逆

|E-A|=|AA^T-A|=|A(A^T-E)|=|A||A^T-E|=|A||A-E|=(-1)^n|A||E-A|=-|A||E-A|因为|A|>0所以|E-A|=0.

矩阵相乘等于他们的行列式相乘

矩阵相乘,结果是矩阵.他们的行列式相乘,结果是一个数.显然不能比较,不能说相等不相等.但是,矩阵相乘的行列式,等于矩阵行列式相乘.比如,矩阵A、B存在以下等式:|AB|=|A||B|

已知A为奇数阶矩阵,行列式大于0,A×A的转置等于单位矩阵,证明单位矩阵减去A不可逆

记得帮你答过了的|E-A|=|AA^T-A|=|A(A^T-E)|=|A||A^T-E|=|A||A-E|=(-1)^n|A||E-A|=-|A||E-A|因为|A|>0所以|E-A|=0.

线性代数 矩阵不可逆的证明

以下AT表示A的转置|E+A|=-|E+A|(-1)=-|E+A||AT|=-|(E+A)AT|=-|AT+AAT|=-|AT+E|=-|(A+E)T|=-|A+E|=-|E+A|所以|E+A|=0,

当证明一个矩阵是可逆矩阵时条件是什么,是AB=BA=E 还是 所证矩阵的行列式不为0?

AB=E如果A(或B,实际上只要有一个另一个一定是)是方阵的化,那么A,B都可逆互为对方的逆.另外可逆很多充要条件.行列式不等于0AB=BA=E方阵时AB=E满秩方阵可以经过初等变换得到单位矩阵等等.

A为 n阶可逆矩阵 请问如何证明A的行列式的逆等于A逆的行列式

你想说det(A⁻¹)=1/det(A)吧?行列式是一个数值,不是矩阵,没有逆的,应该要说倒数关系det(E)=1det(A·A⁻¹)=1det(A)·de

如何证明相似矩阵同时可逆或不可逆

设A,B相似,则存在可逆矩阵P满足p^(-1)AP=B两边取行列式得|B|=|p^(-1)AP|=|p^(-1)||A||P|=|A|所以|A|与|B|同时为0可同时不为0所以A与B同时可逆或不可逆.

证明:矩阵A不可逆,则伴随矩阵行列式为0

首先如果A=O,很容易看出A*=O,自然有|A*|=0.下面假设A≠O,A不可逆可知|A|=0,由于AA*=|A|E,因此AA*=O(0矩阵).这里要用到矩阵乘积为O的一个结论:如果AB=O,则r(A

证明:若A可逆,则A伴随矩阵的行列式等于A行列式的n-1次方

AA*=det(A)E则det(A)det(A*)=(det(A))^n故det(A*)=(det(A))^(n-1)

分块对角矩阵行列式等于分块行列式相乘,怎么证明?

将每个子方阵通过行(列)变换,化为上(下)三角矩阵,则大矩阵化为上(下)三角矩阵,则大矩阵的行列式等于主对角线上元素的乘积;且每个子矩阵的行列式等于它们的上(下)三角矩阵主对角线上元素的乘积.即分块对

矩阵不可逆的充分必要条件

A矩阵不可逆|A|=0A的列(行)向量组线性相关R(A)

如果矩阵A可逆,那么行列式A的值是不是一定不等于零?如果矩阵A不可逆,那么行列式A的值是不是一定等于零

两个都是充要条件如果矩阵A可逆,|A|不等于零如果矩阵A不可逆,|A|=0这个是线性代数的一个定理,证明我忘了

若存在c属于C(复数域)使得数值矩阵A(c)的行列式detA(c)=0,则A(x)不可逆

反证即可,若A(λ)可逆,那么存在矩阵B(λ)使得A(λ)B(λ)=E带入λ=c有A(c)B(c)=E那么det(A(c))det(B(c))=1det(A(c))≠0,矛盾

有关可逆矩阵的行列式请如果矩阵A为nxn可逆矩阵,那么是否一定有A的行列式不等于零?

若A为可逆阵,那么有A*A-1=E两边取行列式有|A*A-1|=|E|=1而左边有|A*A-1|=|A|*|A-1|=1≠0,所以|A|≠0证毕.

为什么行列式不等于零 矩阵可逆?

求逆公式是什么?1/{A}*{A}的伴随矩阵,你觉得什么东西分母可以等于0的呢?

矩阵乘积的行列式等于矩阵行列式的乘积?

你先把行列式的基本性质复习复习,都掌握之后就能看懂了最关键的性质就是把行列式某一行的若干倍加到另一行上整个行列式的值不变

可逆矩阵行列式不为零,可逆矩阵一定可化为单位矩阵,进行初等变换矩阵是等价的啊!

A与B等价则存在可逆矩阵P,Q满足PAQ=B所以|P||A||Q|=|B|所以|A|与|B|差一个非零的倍数!

A是n阶矩阵,行列式|A|=2,若矩阵A +E不可逆,则矩阵A的伴随矩阵A*必有特征值?

因为A+E不可逆所以|A+E|=0所以-1是A的一个特征值所以|A|/(-1)=-2是A*的一个特征值

线代 1.设A是n阶矩阵,且(条件请看图),证A+E不可逆.2.求图中这个行列式的值.

以下以A'代表A的转置,以A^(-1)代表A的逆矩阵.1、|A+E|=|A'+E|=|A^(-1)+E|=|A^(-1)|*|A+E|=-|A+E|,所以|A+E|=0,A+E不可逆.2、A^2=AA