当证明一个矩阵是可逆矩阵时条件是什么,是AB=BA=E 还是 所证矩阵的行列式不为0?
当证明一个矩阵是可逆矩阵时条件是什么,是AB=BA=E 还是 所证矩阵的行列式不为0?
如何证明矩阵可逆(A-E)BA*(-)=E 能说明矩阵A-E可逆,其逆矩阵为BA*(-)么?证明矩阵可逆是随便一个矩阵与
矩阵可逆的证明一个矩阵有:A^2=A,A=E-ab(b为a转置矩阵),如果ba=1,证明A不可逆.我想知道ba=1,可不
设N阶矩阵A,B满足条件A+B=AB 1证明A—E是可逆矩阵,并求其逆 2证明AB=BA
设A,B均为n阶矩阵.证明:分块矩阵AB BA是可逆矩阵当且仅当A+B A-B均为可逆矩阵
已知A ,B都是n阶矩阵,且E-AB是可逆矩阵,证明E-BA是可逆矩阵.
逆矩阵定义问题对于n阶矩阵A,如果有一个n阶矩阵B,使AB=BA=E,则说矩阵A是可逆的,并把B矩阵称为A的逆矩阵.如果
A是n阶矩阵,行列式|A|=2,若矩阵A +E不可逆,则矩阵A的伴随矩阵A*必有特征值?
设A,B是n阶矩阵,E是n阶单位矩阵,且AB=A-B证明A+E可逆,证明AB=BA
线性代数,这个怎么证:设A是m*n矩阵,B是n*m矩阵,证明当m>n时,方阵c=AB不可逆.
线性代数,已知A,B都是n阶矩阵,E-AB是可逆矩阵,怎么证明E-BA也可逆啊?
已知A和B都是n阶矩阵,且E-AB是可逆矩阵,证明E-BA可逆