∫∫√ydxdy,积分区域为y=1,y=x^2所围成的图形,为什么我用x型积分区域和y型积分区域积出的值不一样?
∫∫√ydxdy,积分区域为y=1,y=x^2所围成的图形,为什么我用x型积分区域和y型积分区域积出的值不一样?
∫∫e^(x+y)dxdy,积分区域为x=0,y=0,x+y=1所围成的区域
求二重积分e^[(x-y)/(x+y)]dxdy,积分区域为x=0,y=0,x+y=1所围成的区域
求二重积分∫x√ydxdy,D:y^2=x,y=x^2所围成的区域
利用积分区域的对称性和被积函数的奇偶性计算∫∫(x∧3cos(y∧2)+y)dxdy,积分区域D为曲线y=x∧2,y=4
计算二重积分∫∫xydxdy ,其中积分区域 D是由y=x ,y=1 ,和x=2 所围成的三角 形域.D
计算二次积分∫∫(x+2y)dxdy,其中D是由y=x^2及y=√x所围成的闭区域
计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,其中积分区域为,x^2+y^2+z^2=1的外侧.
曲面积分zxdxdy+xydydz+yzdzdxξ是坐标轴和x+y+z=1所围成的区域外围
计算∫∫∫(x^2+y^2)dxdydz, 积分区域由曲面z=2-x^2 和z=x^2+2y^2所围成的闭区域,在线等
计算三重积分∫∫∫Ωzdxdydz,其中Ω为三个坐标面及平面2/x+y+Z=1所围成的区域
计算三重积分∫∫∫xdxdydz,其中Ω为三个坐标面及平面x+2y+z=1所围成的闭区域