已知在RT三角形BDE中,AC=BC,BD=DE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 22:18:10
BM⊥DM且DM=BM步骤如下延长DM至F,使DM=MF连接CF,BF,BD延长CF,AD交于G则EM=MC角EMD=角FMC∴ED=CFED‖FC∵ED⊥AD∴CG⊥AG∴角GAC+角GCA=90°
将B翻折,图如1L的.则BE=DE,D为AC的中点,DC=3,设DE=x,在RT三角形CDE有3*3+(8-x)*(8-x)=x*x,x=73/16将A翻折,图自己画吧.则AE=DE,D为BC的中点,
取BE中点O,连结OD.设圆O半径为r∵BC²+AC²=AB²,∴∠C=90°∵BD⊥DE,∴∠BDE=90°,∴BE为圆O的直径,则O为圆心∵BD平分∠CBE,∴∠CB
角ABD=1/2ABC=22.5度算就行了
如图所示,作GD平行BFDQ垂直CF作GH垂直BCGHQD是矩形又因为∠DEF=45°所以QD=4,AL=AC-DQ=8-4=4△AGI全等△GBH(AAS)BH=GLGL+BH=BC=4所以BH=G
证明:MN=AC连接CM∵△ABC是Rt△∴MC=1/2AB∵M是AB的中点∴AM=1/2AB∴AM=CM∴∠MCA=∠MAC∵MN‖AC∴∠ANM=∠MAC∴∠ANM=∠MCA∴∠MAN=∠AMC∴
∵(AB+BC)²=AB²+BC²+2AB·BC,(平方和公式,勾股定理)17²=12²+4(½AB·BC),∴rt△ABC面积=½
在EP上取点G,使EG=DF,连接BG,EB=ED.∠BEG=∠BDF=90°,EG=DF,——》△BEG≌△BDF,——》BG=BF,∠EBG=∠DBF,——》∠GBF=∠EBD=90°,∠PBF=
求证啥东西?麻烦采纳,谢谢!
这道题的思路比较简单,就是通过底和高的关系来寻找比例,就是打字比较麻烦;如图所示:在三角形ADE和三角形BDE中,以AB为底边做高,则两三角形共高.即BD:AD=1:2;做DF垂直于AE交AE于F;做
设BC=2,故AD=DC=1,BD=根号5过D点作AB垂线交AB于E,故DE=1/2*根号2故sin角ABD=(1/2*根号2)/(根号5)=(根号10)/10.
(1)在三角形ACB与三角形BDA中AC=BD角CAB=角DBAAB=BA所以三角形ACB全等于三角形BDA.(SAS)所以角ABC=角DAB.因为角CAB=角CAD+角DAB角DBA=角DBE+角E
由题意,AH⊥HC,AH=4,AC=5,所以HC=3设AB=x,三角形面积=1/2xAHxBC=1/2xABxAC所以BH=5x/4-3又三角形ABH中,AB^2=AH^2+BH^2解得x=20/3S
连结AM.因为FD垂直于AB,易得三角形BFD是等腰直角三角形.所以FD=BF.四边形AEDF是平行四边形,这个很容易证吧.我不详细讲了哈.所以,AE=FD=BF.因为M是BC中点,所以角MAC为45
∠CAD=∠BAC,∠ADC=∠ACB=90°所以△ADC相似△ACB再问:是∠CAD=∠ABC吧。对应角。哦还有当时没学两个三角形相似的判定。这题是在介绍引入相似三角形概念那里的练习题。所以应该是让
连接ED,延长ED,CA交于点F,连接BF因为AD垂直平面ABC,EC垂直平面ABC所以AD//EC因为CE=2AD所以AD是三角形FCE的中位线所以AF=AC因为AB=AC所以AB=AF=AC所以角
方法一:延长ED交CA的延长线于F.∵AD⊥平面ABC、CE⊥平面ABC,∴AD∥CE,又CE=2AD,∴AC=AF,又AB=AC,∴AB=AC=AF,∴A是△BCF的外心,∴BF⊥BC.∵CE⊥平面
∠BAC=∠BDE=90,点E在三角形ABC内,连CE,取CE的中点M,连DM,AM,则AM,DM关系\x0d关于已知在三角形ABC和三角形DBE中,AB=AC,DB=DE,若角BAC=角BDE=&,