已知在rt三角形中,m是bc的中点d.e分别在ab和ac上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 06:02:38
已知在rt三角形中,m是bc的中点d.e分别在ab和ac上
在rt三角形ABC中,CD是斜边AB上的高,已知AB=50cm,BC=30cm,求CD长

设CD为xcm在rt△ABC中,AC=40S△ABC=1/2(AC*BC)=1/2(AB*CD)1/2(40*30)=1/2(50*x)x=24cm

已知:M是Rt三角形ABC斜边BC的中点,P.Q分别在AB,AC上,且PM⊥QM,求证:PQ=PB+QC.

过C点作CD平行且等于AB,连接DB,得到矩形ABDC延长QM交BD于E因为M是BC中点,所以M是矩形ABDC中心所以QM=ME易证△QMC≌△EMB所以BE=CQ所以QC+PB=BE+PB=PE连接

如图,在Rt三角形ABC中,∠A=90°,AD平分∠BAC,点M是BC的中点,且DM⊥BC.试说明MA=MD.

过D分别做AB、AC的垂线,垂足分别为E、F.AEDF为正方形.DE=DF,DB=DC∴RT△DEB≌RT△DFC∠EDB=∠FDC∴△BDC为等腰直角△.DM=BC/2=AM

已知,在Rt三角形ABC中,角C=90度,AC=BC,M是AC中点,连接BM,CF垂直于MB,F是垂足,延CF交AB于点

作CD⊥AB∵角C=90°,AC=BC∴∠A=∠ABC=45°∵CD⊥AB∴∠DCB=90-45=45=∠DBC在RT△MCF中,∵CF⊥MB,∴∠ACE=90-∠CMB在RT△CMB中,∵CD⊥AB

已知,如图,在RT三角形ABC中,∠ACB=90度,M是AB的中点,D是BC延长线上的一点,且CD=BM,求证:∠B=2

证明:∵∠ACB=90,M是AB的中点∴CM=BM=AM=AB/2(直角三角形中线特性)∴∠BCM=∠B∵CD=BM∴CD=CM∴∠D=∠CMD∴∠BCM=∠D+∠CMD=2∠D∴∠B=2∠D数学辅导

已知:在Rt三角形ABC中,角B=90度,三角形ADE是由三角形ABC绕点A旋转所得到的图形,直线DE与直线BC交于点F

因为AB=AD又因为AF=AF,角B=角ADF=90度所以三角形ABF与三角形ADF是全等三角形所以BF=DF因为三角形ADE是由三角形ABC绕点A旋转所得,所以BC=DE所以BC=BF+FC=DF+

已知:在Rt三角形ABC中,D是斜边AB的中点,DE//BC,EF//DC,求证:四边形DBFE是等腰梯形

证明:∵D是Rt△ABC斜边AB的中点∴CD=1/2AB=DB∴∠DCB=∠DBC∵EF∥DC∴∠EFB=∠DCB∴∠EFB=∠DBC∴四边形DBFE是等腰梯形

已知在Rt三角形ABC中,∠C=90°,直角AC是直角边BC的2倍,求∠B的四个三角函数

设BC=k,则AC=2k,根据勾股定理可求AB=根号5ksinB=AC/AB=2k/根号5k=2倍根号5/5cosB=BC/AB=k/根号5k=根号5/5tanB=AC/BC=2k/k=2ctanB=

已知,在Rt三角形ABC中,∠C=90°,点M是AB的中点,AM=AN,MN平行于AC,试证:MN=AC

证明:MN=AC连接CM∵△ABC是Rt△∴MC=1/2AB∵M是AB的中点∴AM=1/2AB∴AM=CM∴∠MCA=∠MAC∵MN‖AC∴∠ANM=∠MAC∴∠ANM=∠MCA∴∠MAN=∠AMC∴

已知 如图 在rt三角形abc中 ,AC=5cm,斜边BC上的高

由题意,AH⊥HC,AH=4,AC=5,所以HC=3设AB=x,三角形面积=1/2xAHxBC=1/2xABxAC所以BH=5x/4-3又三角形ABH中,AB^2=AH^2+BH^2解得x=20/3S

在Rt三角形ABC中,AD是斜边BC上的高,I1,I2分别是三角形ABD,三角形ACD的内心,求证:B,C,I1,I2四

连接I1D,I2D,分别平分△ABD和△ACD的直角,则I1D⊥I2D,连接AI1,AI2,△AI1D∽△CI2D,I1D/I2D=AD/DC,Rt△ACD∽Rt△I1I2D,∠I1I2D=∠C,四边

已知:在Rt三角形ABC中,D是斜边BC上的一点,且角CAD=角C,过点D向三角形外作BC的垂线,还有见补充说明

E点应该在BC上吧?角DAF=角DAC-角FAC=角C-角FAC=角C-45度角F=180度-角FDE-角DEF=90度-角AEC=90度-(180度-角EAC-角C)=角C-45度所以角DAF=角F

在Rt三角形ABC中,M是斜边BC的中点,P、Q分别是AB、AC边上的点,求证:三角形MPQ的周长大于BC

延长BA到B',使得AB=AB'延长CA到C',使得AC=AC'连接B'C,B'C'.在B'C'上取中点M',在AB'上取P'使得AP=AP'连接AM',M'P',P'Q可以知道PQ=P'Q,PM=P

已知在RT△ABC中,AB=BC;在RT△ADE中,AD=DE;连结EC,取EC的中点M,连结DM和BM.

1)证:Rt△ABC中,因为AB=CB;所以角A=角C=45°Rt△ADE中,AD=DE,所以角AED=角ADE=45°因为M是EC中点所以MB=MC=ME=MD角EMD=角MCD*2;角EMB=角B

在Rt三角形ABC中,已知角C=90度,BC=5,AC=12,则AB= ,边AB上的高是

根据三角形的勾股定理,可以求AB=根号(12的平方加5的平方),AB边上的高×AB×二分之一=5×12×二分之一,解出高等于13分之60

在Rt三角形ABC中,M是斜边BC的中点,P、Q分别是AB、AC,边上的点,求证:三角形MPQ的周长大于BC

提示一下:取PQ中点NAM、AN、MN.先证明MP+MQ>2MN有PQ=AN+AN还有MN+AN≥AM.

已知,在RT三角形ABC中,角C等于RT角,点D,E,F分别是AB,BC,CA边上的中点

∵D、E是AB,BC的中点∴DE//FC∵D,F是AB,AC的中点∴DF‖EC所以四边形CEDF是平行四边形又∵角C是直角∴四边形CEDF是矩形