已知A,B,C是平面上不共线三点,O是三角形ABC的重心,动点P满足向量OP=三分之一(向量OA+向量OB+2向量OC)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 22:55:51
已知A,B,C是平面上不共线三点,O是三角形ABC的重心,动点P满足向量OP=三分之一(向量OA+向量OB+2向量OC),则动点P一定是三角形ABC的什么
取AB中点为M,
1/2向量OA+1/2向量OB=向量OM
OP=1/3(1/2向量OA+1/2向量OB+2向量OC)
=1/3(向量OM+2向量OC) ( O是三角形ABC的重心
=1/3(向量OM-4向量OM) ( ∴向量OC=-2向量OM)
=-向量OM
则P是AB边中线的三等分点 (非重心)
请采纳答案,支持我一下.
再问: 有一步不懂
再问: 为什么O是重心,2向量OC就等于-4向量OM
1/2向量OA+1/2向量OB=向量OM
OP=1/3(1/2向量OA+1/2向量OB+2向量OC)
=1/3(向量OM+2向量OC) ( O是三角形ABC的重心
=1/3(向量OM-4向量OM) ( ∴向量OC=-2向量OM)
=-向量OM
则P是AB边中线的三等分点 (非重心)
请采纳答案,支持我一下.
再问: 有一步不懂
再问: 为什么O是重心,2向量OC就等于-4向量OM
已知A,B,C是平面上不共线三点,O是三角形ABC的重心,动点P满足向量OP=三分之一(向量OA+向量OB+2向量OC)
为什么 已知A,B,C是平面上不共线的三点,O是三角形ABC的重心,动点P满足向量OP=1/3(1/2向量OA+1/2向
1、已知A、B、C是平面上不共线的三点,O为△ABC的外心,动点P满足向量OP=【(1-k)向量OA+(1-k)向量OB
已知O是平面上一丁点,ABC是平面上不共线的三点,动点P满足向量OP=(向量OB+向量OC)/2+λ(向量AB/(|向量
已知ABC是平面不共线的三点,o是△ABC的重心,动点p满足向量OP=1/3(1/2向量OA+1/2向量OB+1/2向量
已知A、B、C是平面上不共线三点,动点P满足向量OP=1/3[(1-λ)向量OA+(1-λ)向量OB+(1+2λ)向量O
已知A、B、C是平面上不共线三点,动点P满足向量OP=1/3[(1-λ)向量OA+(1-λ)向量OB+(1+2λ)向量
O是平面上一点,A,B,C是平面上不共线三点,动点P满足向量OP=向量OA+λ((向量AB+向量AC),λ∈[0,1/2
若O为平面内一点,A、B、C是平面上不共线三点,动点P满足向量OP=向量OA+λ(向量AB+1/2向量BC)λ∈(0,+
设O是平面上一定点,A、B、C是平面上不共线的三点,动点P满足向量OP=向量OA+t(向量AB/ 向量AB的模*cosB
O是平面上一点,A B C是平面上不共线的三点,平面内的的动点P满足向量OP=向量OA+X(向量AB+向量AC),若X=
已知O是平面上一定点,A,B,C,是平面上不共线的三个点,动点P满足向量OP=向量OA+λ(向量AB/ABsinB+向量