设O是平面上一定点,A、B、C是平面上不共线的三点,动点P满足向量OP=向量OA+t(向量AB/ 向量AB的模*cosB
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 22:10:50
设O是平面上一定点,A、B、C是平面上不共线的三点,动点P满足向量OP=向量OA+t(向量AB/ 向量AB的模*cosB+向量AC/ 向量AC的模*cosC),t属于(0,+无穷),则动点P的轨迹一定过三角形ABC的什么心?
向量OP=向量OA+t[向量AB/( |向量AB|*cosB)+向量AC/( |向量AC|*cosC)]
向量OP-OA=t[向量AB/( |向量AB|*cosB)+向量AC/( |向量AC|*cosC)]
∴向量AP=t[向量AB/( |向量AB|*cosB)+向量AC/( |向量AC|*cosC)]
∴向量AP*向量BC=t[向量BC·向量AB/( |向量AB|*cosB)+向量BC·向量AC/( |向量AC|*cosC)]
=t[|向量BC||向量AB|(-cosB)/( |向量AB|*cosB)+|向量BC||向量AC|cosC/( |向量AC|*cosC)]
=t[|向量BC|(-1)+|向量BC|]=0
∴向量AP⊥向量BC
∴动点P的轨迹一定过三角形ABC的垂心
向量OP-OA=t[向量AB/( |向量AB|*cosB)+向量AC/( |向量AC|*cosC)]
∴向量AP=t[向量AB/( |向量AB|*cosB)+向量AC/( |向量AC|*cosC)]
∴向量AP*向量BC=t[向量BC·向量AB/( |向量AB|*cosB)+向量BC·向量AC/( |向量AC|*cosC)]
=t[|向量BC||向量AB|(-cosB)/( |向量AB|*cosB)+|向量BC||向量AC|cosC/( |向量AC|*cosC)]
=t[|向量BC|(-1)+|向量BC|]=0
∴向量AP⊥向量BC
∴动点P的轨迹一定过三角形ABC的垂心
设O是平面上一定点,A、B、C是平面上不共线的三点,动点P满足向量OP=向量OA+t(向量AB/ 向量AB的模*cosB
O是平面上一点,A B C是平面上不共线的三点,平面内的的动点P满足向量OP=向量OA+X(向量AB+向量AC),若X=
O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足向量OP = 向量OA+λ(向量AB +向量AC ),
已知O是平面上一定点,A,B,C,是平面上不共线的三个点,动点P满足向量OP=向量OA+λ(向量AB/ABsinB+向量
o是平面上的一点,A B C是平面上的不共线的三个点,动点P满足OP向量=OA向量+λ(AB向量/AB向量的模 + AC
O是平面上一个定点,A、B、C是平面上不共线的三个点,动点P满足向量OP=向量OA+λ(向量AB除以向量AB的摸+向量A
O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足向量OP=OA+t(AB+AC),t∈[0,+∞).则P的
已知O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OP=OA+λ(向量AB/sinc+向量AC/sinb
O是平面上一点,A,B,C是平面上不共线三点,动点P满足向量OP=向量OA+λ((向量AB+向量AC),λ∈[0,1/2
O是平面上一定点,A、B、C是平面上不贡献的三个点,动点P满足向量OP=向量OA+λ*(向量AB/ | 向量AC |+向
若O为平面内一点,A、B、C是平面上不共线三点,动点P满足向量OP=向量OA+λ(向量AB+1/2向量BC)λ∈(0,+
已知O是平面内的一个定点,A,B,C是平面内不共线的三个点,动点P满足向量在向量OP=向量OA+λ(向量AB/向量AB的