设函数f(x)=x^3,g(x)=-x^2+x-2/9a,若存在x0∈[-1,a/3](a>0)使得f(x0)
设函数f(x)=x^3,g(x)=-x^2+x-2/9a,若存在x0∈[-1,a/3](a>0)使得f(x0)
设a>0,函数f(x)=1/x^2+a 证明:存在唯一实数x0∈(0,1/a),使f(x0)=x0
已知函数f (x)=(2-x)/(x+1).是否存在负数x0,使得f(x0)=3的x次方成立,若存在求出x0,若不存在,
已知函数y=f(x),若存在x0∈R,使得f(x0)=x0
对于函数f(x)=ax^2+(b+1)x+b+1(a≠0),若存在x0∈R使f(x0)=x0,则称x0为f(x)的不动点
已知函数f(x0=x?g(x)=x-1 若存在x0∈r使f(x0)
设a>0,函数f(x)=1/(x²+a).已知存在唯一的实数x0∈(0,1/a),使得
已知函数y=f(x),若存在x0,使得f(x0)=x0,则x0称是函数y=f(x)的一个不动点,设f(x)=5x-2/(
对于函数f(x)=ax2+(b+1)x+b-2,(a≠0),若存在实数x0,使f(x0)=x0成立,则称x0为f(x)的
对于函数f(x)=ax2+(b+1)x+b-2(a≠0),若存在实数x0,使f(x0)=x0成立,则称x0为f(x)的不
对于函数f(x)=ax2+(b+1)x+b-2(a≠0),若存在实数x0,使f(x0)=x0成立,则称x0为f(x)的不
设函数f(x)=x^3,x0在x=0处可导求a.b