如图,两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB且AM=FN,求证:MN∥平面BCE.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 23:58:34
如图,两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB且AM=FN,求证:MN∥平面BCE.
证法一:过M作MP⊥BC,NQ⊥BE,P、Q为垂足(如图),连接PQ.
∵MP∥AB,NQ∥AB,∴MP∥NQ.
又NQ=
2
2BN=
2
2CM=MP,∴MPQN是平行四边形.
∴MN∥PQ,PQ⊂平面BCE.
而MN⊄平面BCE,
∴MN∥平面BCE.
证法二:过M作MG∥BC,交AB于点G(如图),连接NG.
∵MG∥BC,BC⊂平面BCE,
MG⊄平面BCE,
∴MG∥平面BCE.
又
BG
GA=
CM
MA=
BN
NF,
∴GN∥AF∥BE,同样可证明GN∥平面BCE.
又面MG∩NG=G,
∴平面MNG∥平面BCE.又MN⊂平面MNG.∴MN∥平面BCE.
∵MP∥AB,NQ∥AB,∴MP∥NQ.
又NQ=
2
2BN=
2
2CM=MP,∴MPQN是平行四边形.
∴MN∥PQ,PQ⊂平面BCE.
而MN⊄平面BCE,
∴MN∥平面BCE.
证法二:过M作MG∥BC,交AB于点G(如图),连接NG.
∵MG∥BC,BC⊂平面BCE,
MG⊄平面BCE,
∴MG∥平面BCE.
又
BG
GA=
CM
MA=
BN
NF,
∴GN∥AF∥BE,同样可证明GN∥平面BCE.
又面MG∩NG=G,
∴平面MNG∥平面BCE.又MN⊂平面MNG.∴MN∥平面BCE.
两个全等的正方形ABCD 和ABEF所在的平面相交于AB,M∈AC,N∈FB,且AM=FN.求证MN‖平面BCE
如图,两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB且AM=FN,求证:MN∥平面BCE.
两个全等的正方形ABCD和ABEF所在平面交于AB,M.N分别是对角线AC和BF上的点,且AM=FN,求证:MN//平面
已知正方形ABCD和正方形ABEF所在的平面相交与AB,点M.N分别在AC和BF上,且AM=FN.求证:MN平行于平面B
已知正方形ABCD和正方形ABEF所在的平面相交与AB,点M.N分别在AC和BF上,且AM=FN.求证:平面MPN平行于
两个边长都为1的正方形ABCD,ABEF所在平面相交于直线AB,M∈AC,N∈BF,并且AM=FN=x.(1).求证:直
入图,两个全等矩形ABCD和ABEF在不同平面内,M,N分别在它们对角线AC.BF上,且AM=FN.求证:MN平行于平面
平行四边形ABCD平行四边形ABEF共边AB,M、N分别是对角线AC、BF上,且AM:AC=FN:FB 求证MN//平面
正方形ABCD与正方形ABEF不共面,M,N分别是AC,BF上的点,且AM=FN.求证:MN∥平面BEC.
已知平行四边形ABCD与平行四边形ABEF共边于AB,M,N分别在对角线AC,BF上且AM:AC=FN:FB,求证,MN
如图,ABCD和ABEF是不在同一平面的两个全等的正方形,点M,N分别在对角线AC,BF上,且CM=BN,求证:MN//
正方形ABCD和正方形ABEF所在的平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ,求证PQ平行于平面BCE