已知圆C:x2+y2=9,点A(-5,0),在直线AO上(O为坐标原点),是否存在定点B(不同于点A),满足:对于圆C上
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 06:23:11
已知圆C:x2+y2=9,点A(-5,0),在直线AO上(O为坐标原点),是否存在定点B(不同于点A),满足:对于圆C上任一点P,都有PB/PA为一常数,若存在,求出所有满足条件的点B的坐标,若不存在,说明理由
分析:(1)先求与直线l垂直的直线的斜率,可得其方程,利用相切求出结果.
(2)先设存在,利用都有PB/PA 为一常数这一条件,以及P在圆上,列出关系,利用恒成立,可以求得结果.(1)设所求直线方程为y=-2x+b,即2x+y-b=0,∵直线与圆相切,
∴l -b l / √(2^2+1^2)=3 ,得 b=±3√5,
∴所求直线方程为y=2x±3√5 ,
假设存在这样的点B(t,0),
当P为圆C与x轴左交点(-3,0)时,PB/PA =l t+3 l /2 ;
当P为圆C与x轴右交点(3,0)时,PB/PA =l t-3 l /8 ,
依题意,l t+3 l /2=l t-3 l /8 ,解得,t=-5(舍去),或t=-9/5 .
下面证明点B(-9/5,0) 对于圆C上任一点P,都有PB/PA为一常数.
设P(x,y),则y^2=9-x^2,
∴ PB^2/PA^2=[(x+9/5)^2+y^2]/[(x+5)^2+y^2]=(x^2+18/5x+81/25+9-x^2)/(x^2+10x+25+9-^x2)=18/25(5x+17)/[2(5x+17)]=9/25,
从而PB/PA=3/5 为常数.
(2)先设存在,利用都有PB/PA 为一常数这一条件,以及P在圆上,列出关系,利用恒成立,可以求得结果.(1)设所求直线方程为y=-2x+b,即2x+y-b=0,∵直线与圆相切,
∴l -b l / √(2^2+1^2)=3 ,得 b=±3√5,
∴所求直线方程为y=2x±3√5 ,
假设存在这样的点B(t,0),
当P为圆C与x轴左交点(-3,0)时,PB/PA =l t+3 l /2 ;
当P为圆C与x轴右交点(3,0)时,PB/PA =l t-3 l /8 ,
依题意,l t+3 l /2=l t-3 l /8 ,解得,t=-5(舍去),或t=-9/5 .
下面证明点B(-9/5,0) 对于圆C上任一点P,都有PB/PA为一常数.
设P(x,y),则y^2=9-x^2,
∴ PB^2/PA^2=[(x+9/5)^2+y^2]/[(x+5)^2+y^2]=(x^2+18/5x+81/25+9-x^2)/(x^2+10x+25+9-^x2)=18/25(5x+17)/[2(5x+17)]=9/25,
从而PB/PA=3/5 为常数.
已知圆C:x2+y2=9,点A(-5,0),在直线AO上(O为坐标原点),是否存在定点B(不同于点A),满足:对于圆C上
已知圆C:x^2+y^2=9,点A(-5,0),直线l:x-2y=0在直线OA上(O为坐标原点),存在定点B(不同于A点
已知圆C:x2+y2=2,坐标原点为O.圆C上任意一点A在x轴上的射影为点B,已知向量OQ=tOA+(1−t)OB(t∈
已知定点A(2,0),P点在圆x2+y2=1上运动,∠AOP的平分线交PA于Q点,其中O为坐标原点,求Q点的轨迹方程
已知定点A(2,0),P点在圆x2+y2=1上运动,∠AOP的平分线交PA于Q点,其中O为坐标原点,求Q点的轨迹方程&n
已知定点A(2,0),P点在圆x2+y2=1上运动,∠AOP的平分线交PA于Q点,其中O为坐标原点,求Q点的轨迹方程.
已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A、B两点,线段AB的中点为M,O为坐标原点.
已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.
已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点
直线和圆的方程已知圆C:x^2+y^2=4,点D(4,0),坐标原点为O.圆C上任意一点A在x轴上的射影为点B,已知向量
已知点P为圆x^2+y^2=4a^2上一动点,Q(2c,0)为定点(c>a>0,为常数),O为坐标原点,求线段PQ的垂直
已知圆C:(x+1)2+y2=8,定点A(1,0),C(-1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足向