已知函数f(x)=ax^3+cx+d (a不=0)是R上的奇函数,当x=1时 f(x)取得极值-2,当x属于[-3,3]
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/17 21:01:48
已知函数f(x)=ax^3+cx+d (a不=0)是R上的奇函数,当x=1时 f(x)取得极值-2,当x属于[-3,3]时,f(x)
因为f(x)=ax^3+cx+d (a≠0)是R上的奇函数,所以f(x)=-f(-x),得d=0
因为x=1时取极值-2,所以f'(1)=0,f(1)=-2
得3a+c=0,a+c=-2
所以a=1,c=-3
所以f(x)=x^3-3x
f'(x)=3x^2-3
令f'(x)=0,得x1=-1,x2=1
所以f(x)在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减
f(-1)=2,f(3)=27-9=18
所以在[-3,3]上f(x)max=18
因为x=1时取极值-2,所以f'(1)=0,f(1)=-2
得3a+c=0,a+c=-2
所以a=1,c=-3
所以f(x)=x^3-3x
f'(x)=3x^2-3
令f'(x)=0,得x1=-1,x2=1
所以f(x)在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减
f(-1)=2,f(3)=27-9=18
所以在[-3,3]上f(x)max=18
已知函数f(x)=ax^3+cx+d (a不=0)是R上的奇函数,当x=1时 f(x)取得极值-2,当x属于[-3,3]
【急】已知函数f(x)=ax^3+cx+d(a≠0)是R上的奇函数,当x=1时f(x)取得极值-2
已知函数f(x)=ax^3+cx+d(a≠0)是R上的奇函数,当x=1时函数f(x)取得极值-2 求函数f(x)的单调区
已知函数f(x)=ax^3+cx+d是R上的奇函数,当x=1时取得极值-2.
已知函数f(x)=ax*3+cx+d(a不等于0)是R上的奇函数,当x=1时f(x)取的极值-2.求f(x)的单调区间和
已知 f(x)=ax^3+bx^2+cx(a≠0)是定义在R上的奇函数,且x=-1时,函数取得极值1
已知函数f(x)=ax^3+cx+d是R上的奇函数,当x=1时取得极值-2.求f(x)的单调区间和极大值.
已知函数f(x)=ax*3+cx+d(a不等于0)是R上的奇函数,当x=1时f(x)取的极值-2.
已知函数f(x)=ax3+cx+d (a≠0)是R上的奇函数,当x=1时,f(x)取得极值-2.
已知R上的奇函数f(x)=ax^3+bx^2+cx+d在点P(1)处的切线斜率为-9,且当x=2时函数f(x)有极值,求
已知函数f(x)=2x^2+x-k,g(x)=ax^3+bx^2+cx+d(a不等于0)是r上的奇函数当x=1,g(x)
已知函数f(x)=ax^3+bx^2+cx+d是R上的奇函数,且在x=1时取得极小值-2/3