作业帮 > 数学 > 作业

已知向量a=(sin(2x+θ),cos(2x+θ),b=(1,根号3),函数f(x)=ab为偶函数,且θ∈[0,π]

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 15:08:26
已知向量a=(sin(2x+θ),cos(2x+θ),b=(1,根号3),函数f(x)=ab为偶函数,且θ∈[0,π]
1.求函数f(x)的解析式.2.设x∈(0,π/2),f(x)=1,求x的值
已知向量a=(sin(2x+θ),cos(2x+θ),b=(1,根号3),函数f(x)=ab为偶函数,且θ∈[0,π]
解由f(x)
=a*b=sin(2x+θ)+√3cos(2x+θ)
=2[1/2sin(2x+θ)+√3/2cos(2x+θ)]
=2sin(2x+θ+π/3)
又由函数f(x)=ab为偶函数,且θ∈[0,π]
则θ+π/3=π/2
即θ=π/6
故f(x)=2sin(2x+π/6+π/3)
=2sin(2x+π/2)
=2cos2x
2由x∈(0,π/2)
则2x∈(0,π)
又由f(x)=2cos2x=1
即cos2x=1/2
故2x=π/3
即x=π/6.