已知函数g(x)=kx+b(k不等于0),当x不属于【-1,-1】时,g(x)的最大值2,又f(x)=2x+3,是否存在
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 22:50:24
已知函数g(x)=kx+b(k不等于0),当x不属于【-1,-1】时,g(x)的最大值2,又f(x)=2x+3,是否存在常数k,b使得f[g(x)]=g[f(x)]对任意的x恒成立,如果存在求kb的值,不存在请说明理由
f[g(x)]=2(kx+b)+3,g[f(x)]=k(2x+3)+b
f[g(x)]=g[f(x)]对任意的x恒成立,则2(kx+b)+3=k(2x+3)+b即b=3k-3
g(x)=kx+b=g(x)=kx+3k-3
g(1)=k+3k-3=4k-3
g(-1)=-k+3k-3=2k-3
当k>0时,g(x)在x∈[-1,1]上单调递增,最大值为g(1),最小值为g(-1)
所以g(1)-g(-1)=2k=2,得k=1
当k
f[g(x)]=g[f(x)]对任意的x恒成立,则2(kx+b)+3=k(2x+3)+b即b=3k-3
g(x)=kx+b=g(x)=kx+3k-3
g(1)=k+3k-3=4k-3
g(-1)=-k+3k-3=2k-3
当k>0时,g(x)在x∈[-1,1]上单调递增,最大值为g(1),最小值为g(-1)
所以g(1)-g(-1)=2k=2,得k=1
当k
已知函数g(x)=kx+b(k不等于0),当x不属于【-1,-1】时,g(x)的最大值2,又f(x)=2x+3,是否存在
1.已知f(x)=kx+b(k≠0),当x∈[﹣1,1]时,g(x)的最大值比最小值大2,又f(x)=2x+3,是否存在
已知函数g(x)满足g(x)=kx+b(k≠0),当x∈[-1,1]时,g(x)的最大值比最小值大2,且f(x)=2x+
已知函数f(x)=kx(k不等于0),且满足f(x+1)f(x)=x^2+x,函数g(x)=ax(注意x是x次方)(a>
已知函数f(x)=kx^2+(3+k)x+3是否存在实数k使得函数f(x)在[-1,4]上的最大值是4
已知函数f(x)=x+1/x-1(x不等于1) 当x属于[3,5]时,求f(x)的最大值和最小值
设k>0,函数f(x)=x^1/3-(x+7)^2/3,g(x)=x/[e^(kx-2)],若任意x1,x2属于(0,+
已知函数f(x)=ln|x|,x不等于0 函数g(x)=1/f'(x)+af'(x)x不等于0 (1)当x不等于0时
f(x)=x^+2x+1,x属于[2,-2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围
f(x)=2x^2-2是否存在实数k,当a+b小于等于2时,使函数g(x)=1/3 f'(x)+k在定义域[a,b]上的
已知二次函数f(x)=x^2-2x+3,当x属于[t,t+1]时,求f(x)的最小值g(t)
已知函数f(x)=x^2+2x+3,当x属于【-2,2】时,g(x)=f(x)-kx是单调函数