作业帮 > 数学 > 作业

在平面直角坐标系中,直线Y=X+1交X轴于点A,叫X轴于点C,OB=3OA,M在直线AC上,AC=CM,

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 13:48:57
在平面直角坐标系中,直线Y=X+1交X轴于点A,叫X轴于点C,OB=3OA,M在直线AC上,AC=CM,
在平面直角坐标系中,直线Y=X+1交X轴于点A,叫X轴于点C,OB=3OA,M在直线AC上,AC=CM,1.求直线BM的解析式 2.点N在MB的延长线上,BN=CM,连CN交X轴于点P,求点P的坐标 3.连OM,在直线BM上是否存在点K,使得角MOK=45度,若存在,求点K的坐标,若不存在,说明理由.
直线Y=X+1交X轴于点A,交Y轴于点C,B在X轴的正半轴上
在平面直角坐标系中,直线Y=X+1交X轴于点A,叫X轴于点C,OB=3OA,M在直线AC上,AC=CM,
很多东西不好打上去,我只讲大概的思路,相信我,看进去 .
1.因为AC=CM
利用中点坐标公式,可求出M点坐标为
M(1,2)
求解析式方法一:两点式 M点和B点
解析式方法二:计算AM、BN、AB的长度,勾股定理可知,三角形AMB等腰直角三角行(建议用此法因为下面两问要用),知道了垂直也就知道了直线BM的系数k=-1,然后很容易求出直线方法,这里不多说了,给出答案
直线BM:y=-x+3
2.过C作AM的垂线交X轴于E点,又由BM垂直于AM,
则CE平行MN,可证明三角形ACM为等腰直角三角形,所以
AC=CE 又AC=BN 所以CE=BN 可证明 三角行CEP与BNP全等
所以EP=PB 则P为EB的中点
E点与A点关于Y轴对称
可求为E(1,0)
P为EB中点,利用中点坐标公式
可求P(2,0)
3.假设存在两个点设为K1(M点下方)和K2(M点上方)
(1)K1的求解
设KI(a,-a+3)
很容易证明三角形MOK和三角形MBO相似(都有45度和一个公共角OMK)
则MO/MB=OK/BO 得K1(9/4,3/4)
(2)K2的求解
设为( b,-b+3)
方法一OKIK2构成直角三角形用勾股定理,可直接求
K2(-3/2,9/2)
方法二 求出OK2直线的方程,其过O点,只要求系数就可以了;先求OK1的系数,太简单了,因为OK1与OK2垂直,所以OK2的系数是OK1的负倒数,求出OK2:y=-3x,将点(b,-b+3)
代入可求