如图,△ABC中,∠ACB=90°,∠BAC=30°,△ABE和△ACD都是等边三角形,BF=FE,DF交AC于M,求证
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 00:53:29
如图,△ABC中,∠ACB=90°,∠BAC=30°,△ABE和△ACD都是等边三角形,BF=FE,DF交AC于M,求证:AM=MC.
证明:连结AF,FC,如图
∵△ABE是等边三角形,BF=EF
∴AF是∠BAE的平分线(三线合一)
∴∠BAF=∠BAE=60/2=30°
∵∠BAC=30°
∴∠BAF=∠BAC
∴△ABF≌△ABC
∴AF=AC
∵△ACD是等边三角形
∴AC=CD
∴AF=CD
又∠FAD=∠FAC+∠CAD=120°,∠ADC=60°
∴∠FAD+∠CDA=180
∴AF∥CD
∴四边形AFCD是平行四边形
∴AM=CM
∵△ABE是等边三角形,BF=EF
∴AF是∠BAE的平分线(三线合一)
∴∠BAF=∠BAE=60/2=30°
∵∠BAC=30°
∴∠BAF=∠BAC
∴△ABF≌△ABC
∴AF=AC
∵△ACD是等边三角形
∴AC=CD
∴AF=CD
又∠FAD=∠FAC+∠CAD=120°,∠ADC=60°
∴∠FAD+∠CDA=180
∴AF∥CD
∴四边形AFCD是平行四边形
∴AM=CM
如图,△ABC中,∠ACB=90°,∠BAC=30°,△ABE和△ACD都是等边三角形,BF=FE,DF交AC于M,求证
如图,△ABC中,∠ABC=90°,∠BAC=30°,△ABE和△ACD都是等边三角形,BF=FE,DF交AC于M,求证
如图,△ABC中,∠ACB=90°,∠BAC=30°,△ABE和△ACD都是等边三角形,F为BE中点,DF交AC于M,连
直角三角形ACB中,∠ABC=90°,∠BAC=30°而△ACD和△ABE都是等边三角形,AC,DE交于F,求证:FD=
如图,△ABC中,∠C=90°,2BC=AB,△ABE和△ACD都是等边三角形,求证:EF=DF
如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,△ADC和△ABE是等边三角形,DE交AB于点F,求证:F是
如图,RT△ABC中,∠ACB=90°,∠BAC=30°,△ABF,△ACE都是等边三角形,FE,FC分别交AB于N.M
如图,在△ABC中,∠ACB=90°,AE平分∠BAC,CD⊥AE交AB于D,交AE于G,DF‖BC交AC于F,求证:D
如图:在Rt△ABC中,∠ACB=90°,∠BAC=30°分别以AB,AC为边在△ABC的外侧作正△ABE和正△ACD,
如图,在△ABC中,D,E分别是AB,AC上的点,BE,CD交于点F,∠ABE=∠ACD,AE=AD,求证:DF=EF
如图,在△ABC中,D、E分别是AB、AC上的点,BE、CD交于点F,∠ABE=∠ACD,AE=AD,求证:DF=EF
已知如图,在△ABC中,∠BAC=90°,AD⊥BC于D,△ABE、△ACF都是等边三角形.