已知等差数列{an}中,S₂=16,S₄=24,求数列{│an│}的前n项和An
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 11:09:46
已知等差数列{an}中,S₂=16,S₄=24,求数列{│an│}的前n项和An
等差数列{an}
a(n) = a1 + (n - 1)d
前n项和S(n) = (2*a1 + (n-1)d) * n / 2 ---------记忆方法:梯形公式:(首项+末项)×项数/2
所以:a(2) =a1 + d =16 ①
a(4) =a1 + 3d =24 ②
a1 = 12 d = 4 ---------------其实 d = (am - an) / (m - n) = (24 - 16) / (4 - 2)
a(n) = a1 + (n - 1)d = 12 + 4(n - 1) = 4n + 8
S(n) = (2*a1 + (n-1)d) * n / 2 = (2*12 + 4(n-1)) * n / 2 = n(2n + 10)
a(n) = a1 + (n - 1)d
前n项和S(n) = (2*a1 + (n-1)d) * n / 2 ---------记忆方法:梯形公式:(首项+末项)×项数/2
所以:a(2) =a1 + d =16 ①
a(4) =a1 + 3d =24 ②
a1 = 12 d = 4 ---------------其实 d = (am - an) / (m - n) = (24 - 16) / (4 - 2)
a(n) = a1 + (n - 1)d = 12 + 4(n - 1) = 4n + 8
S(n) = (2*a1 + (n-1)d) * n / 2 = (2*12 + 4(n-1)) * n / 2 = n(2n + 10)
已知等差数列{an}中,S₂=16,S₄=24,求数列{│an│}的前n项和An
数列an中,a1=1,an+1=2an+2的n次方,设bn=an/2∧n-1,证明bn是等差数列,求数列an的前n项和s
已知等差数列{an}中,s3=21,s6=24,求数列{|an|}的前n项和Tn
在等差数列{an}中,已知a10=30,a20=50,(1)求数列{an}的通用公式an;(2)若数列{an}的前n项和
求一道数列题已知数列an的首项a13,通项an与前n项和Sn满足2an=Sn*S(n-1),(1)求证1/Sn是等差数列
已知数列{an}的前n项和Sn=12n-n²,求数列{an}的通项公式,(1)证明数列{an}是等差数列.
已知数列{an}的前n项和S=(n^2)+1 一求:写出数列{an}的前五项,并判断这个数列是否为等差数列 二求:数列{
已知等差数列{an}中,a1=3,前n项和Sn=1/2(n+1)(an+1)-1,求数列{an}的公差.
1:已知数列{an}的前n项和是S=32n-n(平方),求数列{|an|}的前n项和Tn.
已知数列{an}的前n项和满足a1=1/2,an=-Sn*S(n-1),(n大于或等于2),求an,Sn
已知数列通项公式an=n^2-n,求前n项和S
已知等差数列{an}中,a1=1,a7+a6=24,求该数列的通项an和前n项和sn