已知圆C:(x-1)^2+y^2=r^2(r>1),设M为圆C与x轴负半轴的交点,过M作圆C的弦MN,并使它的中点P恰好
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 00:26:02
已知圆C:(x-1)^2+y^2=r^2(r>1),设M为圆C与x轴负半轴的交点,过M作圆C的弦MN,并使它的中点P恰好
并使它的中点P恰好落在y轴上(1)当r∈(1,+∞)时,求点N的轨迹E的方程
(2)A(x1,2),B(x2,y2),C(x0,y0)是E上不同的点,且AB垂直BC,求y0的取值范围
已知抛物线C的顶点在原点,焦点在X轴上且抛物线C上的点P(2,4),过P作抛物线的动弦PA
,PB,设斜率分别为Kpa,Kpb,
1.求抛物线方程
2.若Kpa+Kpb=0,求证直线AB的斜率为定值,并求出其值
3.若Kpa+Kpb=1,求证直线AB过定点,并求出其坐标
并使它的中点P恰好落在y轴上(1)当r∈(1,+∞)时,求点N的轨迹E的方程
(2)A(x1,2),B(x2,y2),C(x0,y0)是E上不同的点,且AB垂直BC,求y0的取值范围
已知抛物线C的顶点在原点,焦点在X轴上且抛物线C上的点P(2,4),过P作抛物线的动弦PA
,PB,设斜率分别为Kpa,Kpb,
1.求抛物线方程
2.若Kpa+Kpb=0,求证直线AB的斜率为定值,并求出其值
3.若Kpa+Kpb=1,求证直线AB过定点,并求出其坐标
(1)因为M(1-r,0),中点为y轴,所以N(r-1,y).代入圆的方程有:N(r-1,正、负根号下(4r-4)).对N的x,y坐标消去参数r有:E:y^2=4x
(2)确定A(1,2).利用斜率之积为-1和两点式可以解得:y0=-(y2+16/(y2+2))(得排除B、C重合点(即令y0=y2求解,不存在)与A、B重合点(即y2=2,y0=-6))利用基本不等式可求得y0范围:y0>=10或者y
(2)确定A(1,2).利用斜率之积为-1和两点式可以解得:y0=-(y2+16/(y2+2))(得排除B、C重合点(即令y0=y2求解,不存在)与A、B重合点(即y2=2,y0=-6))利用基本不等式可求得y0范围:y0>=10或者y
已知圆C:(x-1)^2+y^2=r^2(r>1),设M为圆C与x轴负半轴的交点,过M作圆C的弦MN,并使它的中点P恰好
已知点P(3,6)和圆C:(x-1)^2+(y-2)^2=r^2,其中r是变量,过P作圆C的两条切线,切点分别为M,N,
高二圆相关的题目求解已知圆C过点P(1,1)且与圆M:(x+2)²+(y+2)²=r²(r
已知过点P(1,2)的一条直线l,与圆C:x^2+y^2-4x-2y-11=0交于M.N两点(1)若点P恰为线MN的中点
已知圆c过点p(1,1),且与圆M(x+2)²+(y+2)²=r²(r>0)关于直线x+y
已知圆C方程为:X^2 Y^2=4,过圆上一动点M作平行于X轴的直线m,设m与Y轴交点为N,若向量OQ=OM+ON,则
已知圆C方程为:X^2 Y^2=4,过圆上一动点M作平行于X轴的直线m,设m与Y轴交点为N,
已知圆C过点P(1,1)且与圆M:(x+2)^2+(y+2)^2=r^2(r>0)关于直线x+y+2=0对称,作斜率为1
已知圆M:x2+(y-2)2=1,设B,C是直线l:x-2y=0上的两点,它们的横坐标分别为t,t+4(t∈R),过p在
已知圆C:x^2+y^2+2x-4y+3=0 (1)过点M(-1,1)的直线l与圆C交于A,B两点,线段AB的中点为P,
圆C过三点,P(m,已知圆C通过不同的三点P(m,0),Q(2,0),R(0,1),且CP的斜率为-1.圆C方程为[x+
已知圆C:x^2+y^2+ax-4y+1=0(a属于R),过定点P(0,1)作斜率为1的直线交圆C于A,B两点 P为线段