作业帮 > 数学 > 作业

已知圆C:(x-1)^2+y^2=r^2(r>1),设M为圆C与x轴负半轴的交点,过M作圆C的弦MN,并使它的中点P恰好

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 00:26:02
已知圆C:(x-1)^2+y^2=r^2(r>1),设M为圆C与x轴负半轴的交点,过M作圆C的弦MN,并使它的中点P恰好
并使它的中点P恰好落在y轴上(1)当r∈(1,+∞)时,求点N的轨迹E的方程
(2)A(x1,2),B(x2,y2),C(x0,y0)是E上不同的点,且AB垂直BC,求y0的取值范围
已知抛物线C的顶点在原点,焦点在X轴上且抛物线C上的点P(2,4),过P作抛物线的动弦PA
,PB,设斜率分别为Kpa,Kpb,
1.求抛物线方程
2.若Kpa+Kpb=0,求证直线AB的斜率为定值,并求出其值
3.若Kpa+Kpb=1,求证直线AB过定点,并求出其坐标
已知圆C:(x-1)^2+y^2=r^2(r>1),设M为圆C与x轴负半轴的交点,过M作圆C的弦MN,并使它的中点P恰好
(1)因为M(1-r,0),中点为y轴,所以N(r-1,y).代入圆的方程有:N(r-1,正、负根号下(4r-4)).对N的x,y坐标消去参数r有:E:y^2=4x
(2)确定A(1,2).利用斜率之积为-1和两点式可以解得:y0=-(y2+16/(y2+2))(得排除B、C重合点(即令y0=y2求解,不存在)与A、B重合点(即y2=2,y0=-6))利用基本不等式可求得y0范围:y0>=10或者y