已知函数f(x)=ax^3+bx^2+cx+d(a≠0)的图像经过原点,f'(1)=0若f(x)在x=-1取得极大值2
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 19:45:53
已知函数f(x)=ax^3+bx^2+cx+d(a≠0)的图像经过原点,f'(1)=0若f(x)在x=-1取得极大值2
(1)求函数y=f(x)的解析式;(2)若对任意的x属于〔-2,4〕都有f(x)≥f’(x)+6x+m,求m的最大值
(1)求函数y=f(x)的解析式;(2)若对任意的x属于〔-2,4〕都有f(x)≥f’(x)+6x+m,求m的最大值
f(0)=0,d=0,f(x)=ax^3+bx^2+cx=ax(x^2+bx/a+c/a)因该函数在x=-1时取得极大值,所以有
(b/a)^2-4c/a=0,b^2=4ac (1)
又f(-1)=2,-a+b-c=2 (2)
f'(x)=3ax^2+2bx+c,f'(-1)=0,3a-2b+c=0 (3)
解(1)、(2)、(3),得到
a=-1/2,b=-3,c=-9/2.
f(x)=-x^3/2-3x^2-9x/2
f'(x)≥f'(x)+6x+m,6x+m≤0,x≤-m/6,m≤-6x,
又-2≤x≤4,m≤-24.m最大值为-24.
再问: 不用直接复制粘贴过来......这是错答案吧
再答: 噢,sorry. (1)由条件可得d=0,3+2b+c=0,c
(b/a)^2-4c/a=0,b^2=4ac (1)
又f(-1)=2,-a+b-c=2 (2)
f'(x)=3ax^2+2bx+c,f'(-1)=0,3a-2b+c=0 (3)
解(1)、(2)、(3),得到
a=-1/2,b=-3,c=-9/2.
f(x)=-x^3/2-3x^2-9x/2
f'(x)≥f'(x)+6x+m,6x+m≤0,x≤-m/6,m≤-6x,
又-2≤x≤4,m≤-24.m最大值为-24.
再问: 不用直接复制粘贴过来......这是错答案吧
再答: 噢,sorry. (1)由条件可得d=0,3+2b+c=0,c
已知函数f(x)=ax^3+bx^2+cx+d(a≠0)的图像经过原点,f'(1)=0若f(x)在x=-1取得极大值2
已知函数f(x)=ax^3+bx^2+cx(a>0)在点Xo处取得极大值5,其导函数y=f'(x)的图像经过(1,0),
已知函数f(x)=ax^3+bx^2+cx在点x.处取得极大值5,其导函数y=f'(x)的图像经过点(1,0),(2,0
已知函数f(x)=ax3+bx2+cx+d(a≠0)的图象经过原点,f′(1)=0若f(x)在x=-1取得极大值2.
已知函数f(x)=ax^3+bx^2+cx在点x0处取得的极大值是5,其导函数y=f(x)的图像经过(1,0)(2,0)
已知函数f(x)=ax^3+bx^2+cx在点x0处取得的极大值是-4,其导函数y=f(x)的图像经过(1,0)(2,0
已知函数f(x)=ax^3+bx^2+cx在点x0处取得的极大值是5,其导函数y=f‘(x)的图像经过(1,0)(2,0
已知函数f(x)=ax^3+bx^2+cx在点x0处取得的极大值是5,其导函数y=f(x)的图像经过(1,0)(2,0)
已知函数f(x)=x立方+bx平方+cx+d的图像经过原点,在x=±1处取得极值.求(1)f(x)解析式(2)f(x)单
已知函数f(x)=ax³+bx²+cx(a≠0,x∈R)为奇函数,且f(x)在x=1处取得极大值2
已知函数f(x)=(1/3)ax^3*bx^2+cx+d在x=x1处取得极大值,在x=x2处取得极小值,证明a >0
三次函数f(x)=aX的三次方+bX平方+cX+d在x=-1处取得极大值,f(x)-2是奇函数