作业帮 > 数学 > 作业

已知a,b为正数且a+b=1,求证(a+1/a)^2+(b+1/b)^2大于等于25/2 1,要求用三角解

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 13:45:45
已知a,b为正数且a+b=1,求证(a+1/a)^2+(b+1/b)^2大于等于25/2 1,要求用三角解
2,还有要求用增量法设a=1/2+t b=1/2-t
用一般不等式的方法我会,求上面两种方法,)
已知a,b为正数且a+b=1,求证(a+1/a)^2+(b+1/b)^2大于等于25/2 1,要求用三角解
1、设a=sin^2a,b=cos^2a,则:
原式=(sin^2a+1/sin^2a)^2+(cos^2a+1/cos^2a)^2
=sin^4a+cos^4a+1/sin^4a+1/cos^4a+4
=1-2sin^2acos^2a+(1-2sin^2acos^2a)/sin^4acos^4a+4
=5-sin^22a/2+(16-8sin^22a)/sin^42a
令t=sin^22a,t∈(0,1],则:
上式y=5-t/2+(16-8t)/t^2,
y’=-1/2-32/t^3+8/t^2=f(1)=5-1/2+(16-8)/1=25/2,命题得证;
2、设a=1/2+t ,b=1/2-t,t∈[0,1/2),则:
原式=[(1+2t)/2+2/(1+2t)]^2+[(1-2t)/2+2/(1-2t)]^2
=(1+4t^2)/2+8(1+4t^2)/(1-4t^2)^2+4,
令1-4t^2=u,u∈(0,1],1+4t^2=2-u,
上式y=(2-u)/2+8(2-u)/u^2+4,
y‘=-1/2-32/u^3+8/u^2=f(1)=(2-1)/2+8(2-1)/1^2+4=25/2,命题得证.