已知a,b为正数且a+b=1,求证(a+1/a)^2+(b+1/b)^2大于等于25/2 1,要求用三角解
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 13:45:45
已知a,b为正数且a+b=1,求证(a+1/a)^2+(b+1/b)^2大于等于25/2 1,要求用三角解
2,还有要求用增量法设a=1/2+t b=1/2-t
用一般不等式的方法我会,求上面两种方法,)
2,还有要求用增量法设a=1/2+t b=1/2-t
用一般不等式的方法我会,求上面两种方法,)
1、设a=sin^2a,b=cos^2a,则:
原式=(sin^2a+1/sin^2a)^2+(cos^2a+1/cos^2a)^2
=sin^4a+cos^4a+1/sin^4a+1/cos^4a+4
=1-2sin^2acos^2a+(1-2sin^2acos^2a)/sin^4acos^4a+4
=5-sin^22a/2+(16-8sin^22a)/sin^42a
令t=sin^22a,t∈(0,1],则:
上式y=5-t/2+(16-8t)/t^2,
y’=-1/2-32/t^3+8/t^2=f(1)=5-1/2+(16-8)/1=25/2,命题得证;
2、设a=1/2+t ,b=1/2-t,t∈[0,1/2),则:
原式=[(1+2t)/2+2/(1+2t)]^2+[(1-2t)/2+2/(1-2t)]^2
=(1+4t^2)/2+8(1+4t^2)/(1-4t^2)^2+4,
令1-4t^2=u,u∈(0,1],1+4t^2=2-u,
上式y=(2-u)/2+8(2-u)/u^2+4,
y‘=-1/2-32/u^3+8/u^2=f(1)=(2-1)/2+8(2-1)/1^2+4=25/2,命题得证.
原式=(sin^2a+1/sin^2a)^2+(cos^2a+1/cos^2a)^2
=sin^4a+cos^4a+1/sin^4a+1/cos^4a+4
=1-2sin^2acos^2a+(1-2sin^2acos^2a)/sin^4acos^4a+4
=5-sin^22a/2+(16-8sin^22a)/sin^42a
令t=sin^22a,t∈(0,1],则:
上式y=5-t/2+(16-8t)/t^2,
y’=-1/2-32/t^3+8/t^2=f(1)=5-1/2+(16-8)/1=25/2,命题得证;
2、设a=1/2+t ,b=1/2-t,t∈[0,1/2),则:
原式=[(1+2t)/2+2/(1+2t)]^2+[(1-2t)/2+2/(1-2t)]^2
=(1+4t^2)/2+8(1+4t^2)/(1-4t^2)^2+4,
令1-4t^2=u,u∈(0,1],1+4t^2=2-u,
上式y=(2-u)/2+8(2-u)/u^2+4,
y‘=-1/2-32/u^3+8/u^2=f(1)=(2-1)/2+8(2-1)/1^2+4=25/2,命题得证.
已知a,b为正数且a+b=1,求证(a+1/a)^2+(b+1/b)^2大于等于25/2 1,要求用三角解
已知a,b,c为正数,求证 (1/a^2+1/b^2+1/c^2)(a+b+c) ^2大于等于27
已知a,b,c均为正数且a+b+c=1,求证a分之1+b分之1+c分之1大于等于9?
已知a,b,c是正数,且ab+bc+ac=1求证a+b+c大于等于根号3
已知a、b为实数,且a不等于b.求证:a的2次方+b的2次方大于等于ab+a+b-1
已知a,b为正数,且a +b等于1,求证:a分之1加b 分之4大于等于9
已知a大于等于-0.5,b大于等于-0.5且a+b=1,求证根号2a+1+根号2b+1小于等于2*根号2.
已知a,b均大于0,且a+b=1,求证(a+1/a)(b+1/b)大于等于25/4
设a,b,c都是正数,求证:1/2a+1/2b+1/2c大于等于1/(b+c)+1/(a+c)+1/(a+b)
设a,b,c都是正数,求证:1/2a+1/2b+1/2c 大于等于1/(b+c)+1/(a+c)+1/(a+b)
a,b为正数,且a+b=1,求证:根号(2a+1)+根号(2b+1)
已知a,b为正数,求证:1/a+4/b大于等2(根号2+1)^2/(2a+b).