已知等差数列{an}的公差d≠0,an≠0,设方程arx^2 +2ar+1 +ar+2=0(r∈N+)是关于x的一元二次
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 20:59:33
已知等差数列{an}的公差d≠0,an≠0,设方程arx^2 +2ar+1 +ar+2=0(r∈N+)是关于x的一元二次方程.
(1)证明这些方程必有公共根.
(2)对于不同的r,设这些方程的另一个根为mr,证明数列{1/(mr+1)}也是等差数列.
注:上述题目中的r和n均为下标,r+1和r+2均为下标.
(1)证明这些方程必有公共根.
(2)对于不同的r,设这些方程的另一个根为mr,证明数列{1/(mr+1)}也是等差数列.
注:上述题目中的r和n均为下标,r+1和r+2均为下标.
方程里漏了个x吧
1)a[r]=a[r+1]-d
a[r+2]=a[r-1]+d
代入方程
(a[r+1]-d)x^2+a[r+1]x+a[r-1]+d=0
(x+1)[(a[r+1]-d)x+a[r+1]+d]=0
两个根:
-1、-(a〔r+1]+d)/(a〔r+1]-d)
所以必有公共根-1
2)1/(m[r]+1)=1/2-a[r+1]/2d
1/(m[r+1]+1)=1/2-a[r+2]/2d
1/(m[r+1]+1)=1/(m[r]+1)=-(a[r+2]-a[r+1])/2d
=-1/2
所以数列{1/(mr+1)}是公差为-1/2的等差数列
1)a[r]=a[r+1]-d
a[r+2]=a[r-1]+d
代入方程
(a[r+1]-d)x^2+a[r+1]x+a[r-1]+d=0
(x+1)[(a[r+1]-d)x+a[r+1]+d]=0
两个根:
-1、-(a〔r+1]+d)/(a〔r+1]-d)
所以必有公共根-1
2)1/(m[r]+1)=1/2-a[r+1]/2d
1/(m[r+1]+1)=1/2-a[r+2]/2d
1/(m[r+1]+1)=1/(m[r]+1)=-(a[r+2]-a[r+1])/2d
=-1/2
所以数列{1/(mr+1)}是公差为-1/2的等差数列
已知等差数列{an}的公差d≠0,an≠0,设方程arx^2 +2ar+1 +ar+2=0(r∈N+)是关于x的一元二次
等差数列{an}中,公差d>0,且a2,a5是方程x^2-6x+8=0的两根 (1)求数列{an}通项an
已知等差数列an的首项为a,公差为d,且方程ax^2-3x+2=0的解为1,d 求数列3^n-1an的前n项和Tn
已知等差数列{an}的公差d>0,满足a3a9=27,a5+a7=12 答案(1)an=n (2)Sn=n/n+1 (3
已知数列{an}是公差为d的等差数列,d≠0且a1=0,bn=2^(an)(n属于N*),Sn是{bn}的前n项和,Tn
设数列{an}是公差为d的等差数列,a3+a5=2,S20=150,又bn=2an−2an+1(n∈N*)
已知非负等差数列{an}的公差d不为0,前n项和为Sn,设m,n,p∈N*,且m+n=2p (1)求证:1/Sn+1/S
已知等差数列an的公差d大于0,且a3,a5是方程x^2-14x+45=0的两根,数列bn的前n项和为Tn,且Tn=(1
已知等差数列an的公差d大于0,且a2,a5是方程x^2-12x+27=0的两根,数列bn的前n项和为Tn,且Tn=1-
已知等差数列{an}的前n项和为Sn,Sn=kn(n+1)-n(k∈R),公差d为2.
设等差数列an的公差为d,且d大于0,已知a1=2,a3=a2的平方-10 (1)问an的通项公式
已知等差数列an的公差d大于0,且a3,a5是方程x^2-14x+45=0的两根