线性代数的证明题,设向量β可由向量组α1,α2,…αS,线性表示,但不能由向量组(Ⅰ)α1,α2,…αS-1线性表示.记
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 23:24:49
线性代数的证明题,
设向量β可由向量组α1,α2,…αS,线性表示,但不能由向量组(Ⅰ)α1,α2,…αS-1线性表示.记向量组(Ⅱ)α1,α2,…αS-1,β,试证向量αS不能由(Ⅰ)线性表示,但可以由(Ⅱ)线性表示
设向量β可由向量组α1,α2,…αS,线性表示,但不能由向量组(Ⅰ)α1,α2,…αS-1线性表示.记向量组(Ⅱ)α1,α2,…αS-1,β,试证向量αS不能由(Ⅰ)线性表示,但可以由(Ⅱ)线性表示
证:(1)反证.
假如αs能由α1,α2,…αs-1线性表示
由已知β可由向量组α1,α2,…αs线性表示
所以 β可由向量组α1,α2,…αs-1线性表示
这与β不能由向量组α1,α2,…αs-1线性表示矛盾.
所以αs不能由α1,α2,…αs-1线性表示.
(2)由已知β可由向量组α1,α2,…αs线性表示,即有
β=k1α1+k2α2+…+ksαs.
再由已知β不能由向量组α1,α2,…αs-1线性表示
所以 ks≠0.
所以有 αs = β/ks-k1/ksα1-k2/ksα2-…-ks-1/ksαs-1
即αs可由α1,α2,…αs-1,β线性表示#
假如αs能由α1,α2,…αs-1线性表示
由已知β可由向量组α1,α2,…αs线性表示
所以 β可由向量组α1,α2,…αs-1线性表示
这与β不能由向量组α1,α2,…αs-1线性表示矛盾.
所以αs不能由α1,α2,…αs-1线性表示.
(2)由已知β可由向量组α1,α2,…αs线性表示,即有
β=k1α1+k2α2+…+ksαs.
再由已知β不能由向量组α1,α2,…αs-1线性表示
所以 ks≠0.
所以有 αs = β/ks-k1/ksα1-k2/ksα2-…-ks-1/ksαs-1
即αs可由α1,α2,…αs-1,β线性表示#
线性代数的证明题,设向量β可由向量组α1,α2,…αS,线性表示,但不能由向量组(Ⅰ)α1,α2,…αS-1线性表示.记
一道线性代数题的理解设向量组I:α1,α2 ,...,αr可由向量组II:β1,β2 ,...βs线性表示若向量组I线性
n维空间向量(急!)设向量β可由向量组α1,α2,.,αr线性表出,但不能由α1,α2,.,αr-1线性表出,证明(1)
线性代数证明题,证明n维向量组α1,α2,……αn线性无关的充分必要条件是,任一n维向量α都可以由他们线性表示.
α1,α2…αr与向量组β1,β2…βs的秩相等,α1,α2…可由β1β2…线性表示,证明两向量等价
线性代数问题,急!s维向量组α1,α2...αs线性无关,且可由向量组β1,β2.,βr线性表出,证明向量组β1,β2.
若向量组A:α1,α2,α3线性无关,向量β1能由A线性表示,向量β2不能由A线性表示,则必有
线性代数问题:设向量组a1,a2,.,as线性无关,向量b1可由它线性表示,而向量b2不能由它线性表示,证明
向量组1:a1,a2...ar可由向量组2:β1,β2...βs线性表示,则
设有四维向量组α1,…,α7,证明其中至少有3个向量能由其余向量线性表示
设向量组a1,a2,a3线性相关,而向量组a2,a3,a4线性无关.证明:(1)a1能由a2,a3表示;(2)a4不能由
设向量组α1,α2,α3线性相关,α2,α3,α4线性无关,证明向量α1必可表示为α2,α3,α4的线性组合