作业帮 > 数学 > 作业

设向量组α1,α2,α3线性相关,α2,α3,α4线性无关,证明向量α1必可表示为α2,α3,α4的线性组合

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 23:25:37
设向量组α1,α2,α3线性相关,α2,α3,α4线性无关,证明向量α1必可表示为α2,α3,α4的线性组合
设向量组α1,α2,α3线性相关,α2,α3,α4线性无关,证明向量α1必可表示为α2,α3,α4的线性组合
因为α2,α3,α4线性无关
所以 α2,α3 线性无关
又因为 α1,α2,α3 线性相关
所以 α1可表示为α2,α3的线性组合
所以 α1可表示为α2,α3,α4的线性组合