证明n(n^2-1)(n^2-5n+26)能被120整除,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 20:35:58
证明n(n^2-1)(n^2-5n+26)能被120整除,
原式=n(n+1)(n-1)(n^2-5n+6+20)
=n(n+1)(n-1)(n^2-5n+6)+20n(n+1)(n-1)
=n(n+1)(n-1)(n-2)(n-3)+20n(n+1)(n-1)
因为n(n+1)(n-1)(n-2)(n-3)有连续5个数,所以必有一个数有因数4,一个数有因数2(但没有4),一个数有因数5,一个数有因数3,得2*3*4*5=120 所以120整除n(n+1)(n-1)(n-2)(n-3)
而n(n+1)(n-1)根据上述分析可知,其中有因数2和3 2*3=6 所以6整除n(n+1)(n-1),所以120整除20n(n+1)(n-1);
因为120整除n(n+1)(n-1)(n-2)(n-3),且整除20n(n+1)(n-1),所以120整除原式
=n(n+1)(n-1)(n^2-5n+6)+20n(n+1)(n-1)
=n(n+1)(n-1)(n-2)(n-3)+20n(n+1)(n-1)
因为n(n+1)(n-1)(n-2)(n-3)有连续5个数,所以必有一个数有因数4,一个数有因数2(但没有4),一个数有因数5,一个数有因数3,得2*3*4*5=120 所以120整除n(n+1)(n-1)(n-2)(n-3)
而n(n+1)(n-1)根据上述分析可知,其中有因数2和3 2*3=6 所以6整除n(n+1)(n-1),所以120整除20n(n+1)(n-1);
因为120整除n(n+1)(n-1)(n-2)(n-3),且整除20n(n+1)(n-1),所以120整除原式
用归纳法定理证明3^(4n+2)+5^(2n+1)能被14整除(n属于N*)
用数学归纳法证明n^3+(n+1)^3+(n+2)^3能被9整除,其中n属于N*
2^(n+2)*3^n+5n-4,怎么证明能被25整除
1)用二项式定理证明 (n+1)^n -1 能被n^2整除
用数学归纳法证明:(1)n(n+1)(2n+1)能被6整除
用二项式定理证明:(n+1)^n-1能被n^2整除
用二项式定理证明(n+1)^n-1能被n^2整除
用数学归纳法证明(2^3n)-1 (n属于N*)能被7整除
用数学归纳法证明 2^3n -1 n∈N 能被7整除
用数学归纳法证明n(n+1)(n+2)能被3整除
用数学归纳法证明:(2^3n)-1 n∈N* 能被7整除
n是整数,试证明n^3-3n^2+2n能被6整除