如图,在△ABC中,∠C=90°,AC=3,BC=4.0为BC边上一点,以0为圆心,OB为半径作半圆与BC边和AB边分别
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 01:14:29
如图,在△ABC中,∠C=90°,AC=3,BC=4.0为BC边上一点,以0为圆心,OB为半径作半圆与BC边和AB边分别交于点D、点E,连接DE.
(1)当BD=3时,求线段DE的长;
(2)过点E作半圆O的切线,当切线与AC边相交时,设交点为F.求证:△FAE是等腰三角形.
(1)当BD=3时,求线段DE的长;
(2)过点E作半圆O的切线,当切线与AC边相交时,设交点为F.求证:△FAE是等腰三角形.
(1)∵∠C=90°,AC=3,BC=4,
∴AB=5,
∵DB为直径,
∴∠DEB=∠C=90°,
又∵∠B=∠B,
∴△DBE∽△ABC,
∴
DE
AC=
BD
AB,
即
DE
3=
3
5,
∴DE=
9
5;
(2)证法一:连接OE,
∵EF为半圆O的切线,
∴∠DEO+∠DEF=90°,
∴∠AEF=∠DEO,
∵△DBE∽△ABC,
∴∠A=∠EDB,
又∵∠EDO=∠DEO,
∴∠AEF=∠A,
∴△FAE是等腰三角形;
证法二:连接OE
∵EF为切线,
∴∠AEF+∠OEB=90°,
∵∠C=90°,
∴∠A+∠B=90°,
∵OE=OB,
∴∠OEB=∠B,
∴∠AEF=∠A,
∴△FAE是等腰三角形.
∴AB=5,
∵DB为直径,
∴∠DEB=∠C=90°,
又∵∠B=∠B,
∴△DBE∽△ABC,
∴
DE
AC=
BD
AB,
即
DE
3=
3
5,
∴DE=
9
5;
(2)证法一:连接OE,
∵EF为半圆O的切线,
∴∠DEO+∠DEF=90°,
∴∠AEF=∠DEO,
∵△DBE∽△ABC,
∴∠A=∠EDB,
又∵∠EDO=∠DEO,
∴∠AEF=∠A,
∴△FAE是等腰三角形;
证法二:连接OE
∵EF为切线,
∴∠AEF+∠OEB=90°,
∵∠C=90°,
∴∠A+∠B=90°,
∵OE=OB,
∴∠OEB=∠B,
∴∠AEF=∠A,
∴△FAE是等腰三角形.
如图在△ABC中,角C=90°,AC=9,BC=12.O为BC边上一点,以O为圆心,OB为半径作半圆与BC边和AB边分别
在三角形ABC中,角C等于90°,AC=3,BC=4,O为BC边上一点,以O为圆心OB为半径做半圆,与AB边交于点D,过
如图,已知△ABC是等腰三角形,∠C=90°,AC=BC=2,在BC上取一点O,以O为圆心,OC为半径作半圆与AB相切于
如图,在△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆分别与AB、AC边相切于D、E两点,连接OD.
如图,在△ABC中,∠A= 90度,O是BC边上一点,以o为圆心的半圆分别与AB,AC边相切于D,
如图,在△ABC中,∠C=90°,AC+BC=9,点O是斜边AB上一点,以O为圆心2为半径的圆分别与AC、BC相切于点D
(2013?钦州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、B
(2013•钦州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、B
如图,在Rt△ABC中,∠C=90°,BC=3,AC=4.D.E分别是AB,AC的中点,以点B为圆心,BC为半径作圆B,
例3.在Rt△ABC中,∠ABC=90°,点O是BC边的中点,以O为圆心,OB为半径作⊙O.(1)如图1,⊙O与AC相交
如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以BC上一点O为圆心作⊙O与AB相切于E,与AC相切于C,又⊙
如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心、CA为半径的圆与AB,BC分别交于