已知抛物线y2=2px经过A,B,C三个点BC垂直x轴

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 12:01:37
已知抛物线y2=2px经过A,B,C三个点BC垂直x轴
A,B是抛物线y2=2px(p>0),并满足OA垂直OB,求证直线AB恒经过一个定点

设kOA=kkOB=-1/k则A(2P/k^2,2P/k)B(2Pk^2,-2Pk)kAB=k/(1-k^2)AB:y+2Pk=[k/(1-k^2)](x-2Pk^2)即y=[k/(1-k^2)](x

设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明直

证明:如图因为抛物线y2=2px(p>0)的焦点为F(p2,0),所以经过点F的直线的方程可设为x=my+p2;代入抛物线方程得y2-2pmy-p2=0,若记A(x1,y1),B(x2,y2),则y1

高二抛物线题已知抛物线y2=2px上有三点a(x1,y1)b(x2,y2),c(x3,y3),且x1

平面内,到一个定点F和一条定直线l距离相等的点的轨迹(或集合)称之为抛物线.另外,F称为"抛物线的焦点",l称为"抛物线的准线".对于抛物线y²=2px其焦点为(p/2,0)和准线为x=-p

已知抛物线y2=2px(p>0)的焦点为双曲线x2a2−y2b2=1(a>0,b>0)的一个焦点,且两条曲线都经过点M(

(1)∵抛物线y2=2px(p>0)经过点M(2,4),∴42=2p×2,解得p=4,∴抛物线的标准方程为y2=8x.…(3分)∴抛物线的焦点为(2,0),∴双曲线的焦点为F1(-2,0),F2(2,

已知抛物线y2=2px(p>0)焦点F恰好是双曲线x

依题意可知a2+b2=p249a2p2-4b2p2=1,两式相减求得8b2=5a2,∴ba=58=104∴双曲线的渐近线方程为y=±bax=±104x故答案为:y=±104x

已知AB是抛物线y^2=2px(p>0)的焦点弦,为抛物线焦点,点A(X1,Y1),B(X2,Y2).求证:

1.设直线AB的斜率为k(a为直线AB的倾斜角)当a=π/2时,AB垂直于x轴,x=p/2得y=±p所以AB的坐标分别为(p/2,p),(p/2,-p)y1*y2=-p^2,x1*x2=p^2/4当a

已知抛物线y^2=2px(p>0)经过焦点F的直线l交抛物线于A,B两点

(1)抛物线y^2=2px①的焦点为F(p/2,0),l:x=my+p/2,②代入①,y^2-2mpy-p^2=0,③P(√2,1)是弦AB的中点,∴(y1+y2)/2=mp=1,由②,√2=m+p/

已知抛物线y1=ax∧2-2x+c经过(0,-1)反比例函数y2=k/x经过(1,a)比较y1与y2的大小

把点代入函数可得y1=ax∧2-2x-1,y2=a/xa不知道是正数还是负数,要分情况讨论哦再问:谢谢啦不过我已经会做了

已知直线l:x=2p与抛物线y2=2px(p>0)交A、B两点.求:OA⊥OB

证明:∵y²=x²(两方程联立,用2p代x)∴y=±x∴交点坐标:A(2p,2p);B(2p,-2p)∴koa=ya/xa=2p/2p=1kob=yb/xb=-2p/2p=-1∵k

已知抛物线C:y2=2px的焦点坐标F(1,0),过F的直线l交抛物线C于A,B两点,

(1)p/2=1求得p=2求得y^2=4x(2)设A(x1,y1)B(x2,y2)则直线方程OAy=y1*xOBy=y2*x则MN=2*绝对值(y1-y2)由于S_ABO=1/2*OF*绝对值(y1-

已知抛物线y^2=2px,直线l斜率为k经过焦点f与抛物线交于A,B求1\AF+1\BF的值.

设抛物线y²=2px(p>0),焦点坐标为F(p/2,0),A(x1,y1),B(x2,y2),过点F的直线方程为x=my+(p/2),代入y²=2px,得y²=2pmy

设抛物线 y2=2px (p>0) 的焦点为F 经过点F的直线交抛物线于A,B两点 点C在抛物线的准线上 且BC‖x轴

思路,证明ACO三点共线,所以证明AO与CO斜率相等即可证明,设直线方程为x=my+(p/2),交点A(x1,y1),B(x2,y2),则C(-p/2,y2)直线方程与抛物线方程联立方程组,消x,得y

斜率为43的直线l经过抛物线y2=2px的焦点F(1,0),且与抛物线相交于A、B两点.

(1)由焦点F(1,0),得p2=1,解得p=2.…(2分)所以抛物线的方程为y2=4x,其准线方程为x=-1,…(4分)(2)设A(x1,y1),B(x2,y2).直线l的方程为y=43•(x−1)

已知抛物线y^2=2px(p>0)的焦点,斜率为2√2的直线交抛物线于A(x1,y1),B(x2,y2)(x1

|AB|=x1+p/2+x2+p/2=x1+x2+p(x1+x2)=9-p|AB|=√(k^2+1)|x1-x2|=3|x1-x2|=9(x1-x2)^2=9y=k(x-p/2)k^2(x^2-px+

已知抛物线方程为y2=2px(p>0),过焦点F的直线l与抛物线交于A(x1,y1)、B(x2,y2),AA1、BB1垂

(1)设直线方程为x=my+p2,代入y2=2px,可得y2-2mpy+p2=0,∴y1y2=-p2,x1•x2=y122p•y222p=p24;(2)根据通径的概念,令x=p2,可得y=±p,∴通径

已知抛物线y2=2px(p>0)上有两点A B ,关于M(2,2)对称

1、因为A,B关于M(2,2)对称,所以,AB中点为M(2,2)则可设AB:x=m(y-2)+2,A(x1,y1),B(x2,y2)(显然直线斜率存在且不为0,斜率不存在的话,弦的中点肯定在x轴上;斜

已知M(a,0)为抛物线y2=2px(p>0)对称轴上一定点,在抛物线上求一点N,使得MN的绝对值最小

设点N的坐标为(x',y'),则y’²=2px’.|MN|=√[(x'-a)²+y'²]=√[(x-a)²+2px']=√[x'²+(2p-2a)x’

已知点A(4,4),若抛物线y2=2px的焦点与椭圆x

椭圆x210+y26=1的右焦点为(2,0),则抛物线y2=2px的焦点(2,0),∴抛物线方程为y2=8x延长MN交抛物线y2=4x的准线x=-1于P,则|MN|=|MF|,∴要使|MA|+|MN|