已知抛物线y2=2x上距点m(m,0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 11:15:31
已知抛物线y2=2x上距点m(m,0)
已知抛物线方程为y2=2px(p>0),直线l:x+y=m过抛物线的焦点且被抛物线截得的弦长为3,求p的值.

由直线l过抛物线的焦点F(p2,0),得直线l的方程为x+y=p2.由x+y=p2y2=2px消去,得y2+2py-p2=0.由题意得△=(2p)2+4p2>0,y1+y2=−2p,y1y2=−p2.

已知A.B是抛物线y2=4x上的两点,P(1,2).

我们之间拥有的这个惟一的世界里哈哈.我看见目光在男人们和女人们中间交换,嘴唇到躯体,而当我们分开,我想我被空中的一片高声恸哭

已知圆M:x2+y2-4x=0及一条抛物线,抛物线顶点在原点,焦点是M的圆心F,

本题考查的知识点比较多,解答步骤如下:根据图像所求表达式设为s,则有:s=AD-BC,其中AD为抛物线的焦点弦,其长设为m,BC为圆的弦,其长设为n.所以:s=m-n根据题意,直线l的斜率为tana记

如图,已知抛物线C:y2=x和⊙M:(x-4)2+y2=1,过抛物线C上一点H(x0,y0)(y0≥1)作两条直线与⊙M

根据图形对称性特点,最小截距出现在AB平行于Y轴的情况下(EF平行Y轴),易求E点坐标(4,2),OE=2,OA=1,则易求A纵坐标为1/2,所以t的最小值是1/2

已知抛物线y2=4x,点M(1,0)关于y轴对称点为N,直线L过点M交抛物线于AB两点.

N(-1,0)直线L:x=ty+1,与抛物线y2=4x联立后得y^2-4ty-4=0,y1+y2=4t,y1y2=-4(1)kNA+kNB=y1/(y1^2/4+1)+y2/(y2^2/4+1)=[1

已知圆C:x2+y2+6x+8y+21=0,抛物线y2=8x的准线为l,设抛物线上任意一点P到直线l的距离为m,则m+|

圆C:x2+y2+6x+8y+21=0即(x+3)2+(y+4)2=4,表示以C(-3,-4)为圆心,半径等于2的圆.抛物线y2=8x的准线为l:x=-2,焦点为F(2,0),根据抛物线的定义可知点P

已知抛物线y2=2px(p>0)焦点F恰好是双曲线x

依题意可知a2+b2=p249a2p2-4b2p2=1,两式相减求得8b2=5a2,∴ba=58=104∴双曲线的渐近线方程为y=±bax=±104x故答案为:y=±104x

抛物线 已知抛物线Y=2X^2 上两点A(x1,y1) B(x2,y2)关于直线y=x+m对称,且x1x2=-1/2,求

两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,所以AB的中点((x1+x2)/2,(y1+y2)/2)在直线y=x+m上.所以m=0.5[(y1+y2)-(x1+x2)]由因为AB在抛

关于抛物线的简单疑问已知抛物线C:x-y2(平方)-2y=0上存在关于直线l:y=x+m对称的相异两点,求m的取值范围.

假设抛物线C:x-y^2-2y=0上的关于直线l:y=x+m对称的相异两点为A(x1,y1)和B(x2,y2)则x1-y1^2-2y1=0x2-y2^2-2y2=0且AB中点在直线l上(y1+y2)/

已知直线x+2y+m=0(m∈R)与抛物线C:y2=x相交于不同的两点A,B.

(1)联立直线x+2y+m=0(m∈R)和抛物线C:y2=x,并整理得y2+2y+m=0,∵直线x+2y+m=0(m∈R)与抛物线C:y2=x相交于不同的两点A,B.∴判别式△=4-4m>0,∴m<1

已知直线y1=-3x+6和抛物线y2=-2x2+3x+2

(1)-3X+6=-2X²+3X+2-2X²+6X-4=0X²-3X+2=0(X-1)(X-2)=0X1=1,X2=2,当X=1或2时,Y1=Y2(2)由于二次函数开口向

已知抛物线y1= x^2-2x-3 ,y2= -x^2-2x-3 .试求M、N两点坐标

检查你的抛物线解析式,是否正确,然后追问吧y2=-x^2-2x-3中是+3吧思路:求函数图像的交点坐标,就是去解解析式组成的方程组解y1=x^2-2x-3(1),y2=-x^2-2x+3(2)组成的方

已知点A(4,-2),抛物线y2=8x的焦点是F,点M在抛物线上,|MA|+|MF|最小值是______.

由题意得F(2,0),准线方程为x=-2,设点M到准线的距离为d=|PM|,则由抛物线的定义得|MA|+|MF|=|MA|+|PM|,故当P、A、M三点共线时,|MF|+|MA|取得最小值为|AP|=

已知(-1,y1),(-2,y2),(-4,y3)是抛物线y=-2x2-8x+m上的点,则(  )

抛物线y=-2x2-8x+m的对称轴为x=-2,且开口向下,x=-2时取得最大值.∵-4<-1,且-4到-2的距离大于-1到-2的距离,根据二次函数的对称性,y3<y1.∴y3<y1<y2.∴故选C.

如图,已知抛物线C:y2=2px(p>0)的准线与x轴交于M点,过M点斜率为k的直线l与抛物线C交于A、B两点.

解(Ⅰ)记A点到准线距离为d,直线l的倾斜角为α,由抛物线的定义知|AM|=54d,∴cosα=d|AM|=45,则sinα=1−cos2α=1−(45)2=35,∴k=±tanα=±sinαcosα

已知抛物线y2=4x截直线y=2x+m所得弦长AB=3根号5

设A(x1,y1),B(x2,y2),则y1=2x1+m,y2=2x2+m,且A,B,的横坐标为方程(2x+m)平方=4x的两个根,即x1,x2为方程4x平方+4(m-1)+m平方=0的两个根,所以x

已知p(3,2)平分抛物线y2=4x的一条弦求弦AB的长

设A(x1,y1),B(x2,y2)则y1^2=4x1y2^2=4x2相减,(y2+y1)(y2-y1)=4(x2-x1)4(y2-y1)=4(x2-x1)kAB=(y2-y1)/(x2-x1)=1A

(2013•杭州一模)已知抛物线C:y2=2px(p>0)和⊙M:x2+y2+8x-12=0,过抛物线C上一点P(x0,

(Ⅰ)由⊙M:x2+y2-8x+12=0,配方得(x-4)2+y2=4,∴圆心M(4,0),半径r=2.由题意知:4+p2=92,解得p=1,∴抛物线C的方程为y2=2x.  &n