三角形ABC中,G是AC的中点,D.E.F是BC边上的四等分点,AD与BG交与M,AF与BG交与N,已知ABM的面积比四
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 11:02:59
三角形ABC中,G是AC的中点,D.E.F是BC边上的四等分点,AD与BG交与M,AF与BG交与N,已知ABM的面积比四边形
FCGN的面积大7.2平方厘米,三角形ABC的面积是多少厘米?
FCGN的面积大7.2平方厘米,三角形ABC的面积是多少厘米?
过F作FH∥BG交AC于H.
显然有:CF=(1/4)CB,∴S(△AFC)=(1/4)S(△ABC).
又FH∥BG,∴△CFH∽△CBG,∴S(△CFH)/S(△CBG)=(CF/CB)^2=(1/4)^2=1/16,
而AG=CG,∴S(△CBG)=(1/2)S(△ABC),∴S(△CFH)=(1/32)S(△ABC).
∵△CFH∽△CBG,∴CH/CG=CF/CB=1/4,∴CH=(1/4)CG=(1/8)AC,
∴AH=AC-CH=AC-(1/8)AC=(7/8)AC,
∴AG/AH=(1/2)AC/[(7/8)AC]=1/(7/4)=4/7.
∵NG∥FH,∴△ANG∽△AFH,∴S(△ANG)/S(△AFH)=(AG/AH)^2=(4/7)^2=16/49,
∴S(△ANG)
=(16/49)S(△AFH)=(16/49)[S(△AFC)-S(△CFH)]
=(16/49)[(1/4)S(△ABC)-(1/32)S(△ABC)]=(16/49)×(7/32)S(△ABC)
=(1/14)S(△ABC).
∴S(四边形FCGN)
=S(△AFC)-S(△ANG)=(1/4)S(△ABC)-(1/14)S(△ABC)=(3/7)S(△ABC).
过D作DJ∥CA交BG于J.
显然有:BD=(1/4)BC,∴S(△ABD)=(1/4)S(△ABC).
∵DJ∥CG,∴△BDJ∽△BCG,∴S(△BDJ)/S(△BCG)=(BD/BC)^2=(1/4)^2=1/16,
∵AG=CG,∴S(△BCG)=(1/2)S(△ABC),∴S(△BDJ)=(1/32)S(△ABC).
∵△BDJ∽△BCG,∴DJ/CG=BD/BC=1/4,∴DJ=(1/4)CG=(1/4)AG.
∵DJ∥GA,∴△MDJ∽△MAC,∴S(△MDJ)/S(△MAC)=(DJ/AG)^2=1/16,
∴S(△MDJ)=(1/16)S(△MAG),
∴S(△BDM)=S(△BDJ)+S(△MDJ)=(1/32)S(△ABC)+(1/16)S(△MAG),
∴S(△ABM)
=S(△ABD)-S(△BDM)=(1/4)S(△ABC)-[(1/32)S(△ABC)+(1/16)S(△MAG)]
=(7/32)S(△ABC)-(1/16)S(△MAG).
又S(△ABM)=S(△ABG)-S(△MAG)=(1/2)S(△ABC)-S(△MAG),
∴(7/32)S(△ABC)-(1/16)S(△MAG)=(1/2)S(△ABC)-S(△MAG),
∴S(△MAG)-(1/16)S(△MAG)=(1/2)S(△ABC)-(7/32)S(△ABC),
∴(15/16)S(△MAG)=(9/32)S(△ABC),
∴S(△MAG)=(3/10)S(△ABC),
∴S(△ABM)=S(△ABG)-S(△MAG)=S(△ABG)-(3/10)S(△ABC)=(7/10)S(△ABC).
依题意,有:S(△ABM)-S(四边形FCGN)=7.2,
∴(7/10)S(△ABC)-(3/7)S(△ABC)=7.2,∴[(49-30)/70]S(△ABC)=7.2,
∴(19/70)S(△ABC)=7.2,∴S(△ABC)=(72/19)(平方厘米).
显然有:CF=(1/4)CB,∴S(△AFC)=(1/4)S(△ABC).
又FH∥BG,∴△CFH∽△CBG,∴S(△CFH)/S(△CBG)=(CF/CB)^2=(1/4)^2=1/16,
而AG=CG,∴S(△CBG)=(1/2)S(△ABC),∴S(△CFH)=(1/32)S(△ABC).
∵△CFH∽△CBG,∴CH/CG=CF/CB=1/4,∴CH=(1/4)CG=(1/8)AC,
∴AH=AC-CH=AC-(1/8)AC=(7/8)AC,
∴AG/AH=(1/2)AC/[(7/8)AC]=1/(7/4)=4/7.
∵NG∥FH,∴△ANG∽△AFH,∴S(△ANG)/S(△AFH)=(AG/AH)^2=(4/7)^2=16/49,
∴S(△ANG)
=(16/49)S(△AFH)=(16/49)[S(△AFC)-S(△CFH)]
=(16/49)[(1/4)S(△ABC)-(1/32)S(△ABC)]=(16/49)×(7/32)S(△ABC)
=(1/14)S(△ABC).
∴S(四边形FCGN)
=S(△AFC)-S(△ANG)=(1/4)S(△ABC)-(1/14)S(△ABC)=(3/7)S(△ABC).
过D作DJ∥CA交BG于J.
显然有:BD=(1/4)BC,∴S(△ABD)=(1/4)S(△ABC).
∵DJ∥CG,∴△BDJ∽△BCG,∴S(△BDJ)/S(△BCG)=(BD/BC)^2=(1/4)^2=1/16,
∵AG=CG,∴S(△BCG)=(1/2)S(△ABC),∴S(△BDJ)=(1/32)S(△ABC).
∵△BDJ∽△BCG,∴DJ/CG=BD/BC=1/4,∴DJ=(1/4)CG=(1/4)AG.
∵DJ∥GA,∴△MDJ∽△MAC,∴S(△MDJ)/S(△MAC)=(DJ/AG)^2=1/16,
∴S(△MDJ)=(1/16)S(△MAG),
∴S(△BDM)=S(△BDJ)+S(△MDJ)=(1/32)S(△ABC)+(1/16)S(△MAG),
∴S(△ABM)
=S(△ABD)-S(△BDM)=(1/4)S(△ABC)-[(1/32)S(△ABC)+(1/16)S(△MAG)]
=(7/32)S(△ABC)-(1/16)S(△MAG).
又S(△ABM)=S(△ABG)-S(△MAG)=(1/2)S(△ABC)-S(△MAG),
∴(7/32)S(△ABC)-(1/16)S(△MAG)=(1/2)S(△ABC)-S(△MAG),
∴S(△MAG)-(1/16)S(△MAG)=(1/2)S(△ABC)-(7/32)S(△ABC),
∴(15/16)S(△MAG)=(9/32)S(△ABC),
∴S(△MAG)=(3/10)S(△ABC),
∴S(△ABM)=S(△ABG)-S(△MAG)=S(△ABG)-(3/10)S(△ABC)=(7/10)S(△ABC).
依题意,有:S(△ABM)-S(四边形FCGN)=7.2,
∴(7/10)S(△ABC)-(3/7)S(△ABC)=7.2,∴[(49-30)/70]S(△ABC)=7.2,
∴(19/70)S(△ABC)=7.2,∴S(△ABC)=(72/19)(平方厘米).
在三角形ABC中,D,E,F为BC上的四等分点,N为AC上的中点.AD,AE,AF分别交BN于G,H,M.求:BG:GH
如图在三角形ABC中,D是BC的中点,过D点的直线GF交与AC于F,交AC的平行线BG于G点,DE垂直于DF交AB于点E
已知,三角形ABC中,D是BC的中点;BG平行AC,经过点D的直线交AC 于F,交BG于点G,过点D作DE垂直于FG,交
如图 BC是半圆O的直径,点G是半圆上任意点,点A为弧BG的中点,AD垂直BC于点D且交BG与点E,AC与BG交于点F
已知G是△ABC的重心,过点G作EF//BC,分别交AB于点E,交AC于点F,D是BG延长线与AC的交点,求DF:AC的
如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,
已知:如图AB是圆o的直径,点E是弧AD的中点,连接BE交AD于点G,BG的垂直平分线CF交BG与点H,交AB于点F,交
在三角形ABC中D是BC边上一点E是AD上中点过点A作BC的平行线交BE的延长线与F且AF等于DC 1.求证D是BC的中
在三角形ABC中,D是BC中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE垂直DF,交AB于E点,连结E
如图,三角形ABC中,D是BC的中点,过点D的直线GF交AC于F,交AC的平行线BG于G点,DE垂直DF,交AB于点E,
在三角形ABC中,D是BC的中点,过点D的直线GF交AC于F,交AC的平行线BG于G点,DE垂直于GF,交AB于E,连接
如图一,正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA边上靠近A、B、C、D的n等分点,连结AF、BG、C