如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 13:06:54
如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到如图2所示的三棱锥A-BCF,其中BC=
| ||
2 |
(1)在等边三角形ABC中,AD=AE,∴
AD
DB=
AE
EC,在折叠后的三棱锥A-BCF中也成立,
∴DE∥BC.
又∵DE⊄平面BCF,BC⊂平面BCF,
∴DE∥平面BCF.
(2)在等边三角形ABC中,F是BC的中点,所以AF⊥BC,即AF⊥CF ①,且BF=CF=
1
2.
∵在三棱锥A-BCF中,BC=
2
2,∴BC2=BF2+CF2,∴CF⊥BF②.
又∵BF∩AF=F,∴CF⊥平面ABF.
(3)由(1)可知GE∥CF,结合(2)可得GE⊥平面DFG.
∴VF−DEG=VE−DFG=
1
3•
1
2•DG•FG•GE=
1
3•
1
2•
1
3•(
1
3•
3
2)•
1
3=
3
324.
AD
DB=
AE
EC,在折叠后的三棱锥A-BCF中也成立,
∴DE∥BC.
又∵DE⊄平面BCF,BC⊂平面BCF,
∴DE∥平面BCF.
(2)在等边三角形ABC中,F是BC的中点,所以AF⊥BC,即AF⊥CF ①,且BF=CF=
1
2.
∵在三棱锥A-BCF中,BC=
2
2,∴BC2=BF2+CF2,∴CF⊥BF②.
又∵BF∩AF=F,∴CF⊥平面ABF.
(3)由(1)可知GE∥CF,结合(2)可得GE⊥平面DFG.
∴VF−DEG=VE−DFG=
1
3•
1
2•DG•FG•GE=
1
3•
1
2•
1
3•(
1
3•
3
2)•
1
3=
3
324.
如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,
(2013•广东)如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,A
(2014•漳州二模)如图1,在边长为3的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点
如图,等边三角形ABC中,D、E分别为AB、BC边上的点,AD=BE,AE与CD交于点F,AG⊥CD于点G,则AF/FG
如图 在等边三角形abc中,D,E分别为AB,AC边上的两个动点且总使AD=BE,AE与CD交于点F,AG⊥CD于点G
如图 在△ABC中,AD⊥BC于点D 点E,F,G 分别是AC,AB,BC的中点 求证.FG=DE
如图 在△ABC中,AD⊥BC于点D,点E,F,G分别是AC,AB,BC的中点,求证FG=DE.
如图1,已知AD是三角形ABC中BC边上的高,以AD为直径的圆O分别交AB、AC于点E、F.(1)求证:AE*AB=AF
如图,△ABC是等边三角形,点D,E分别是BC.AC上的点,且AE=CD,AD与BE交于点为F
如图,△ABC是等边三角形,点D,E分别是BC.AC上的点,且AE=CD,AD与BE交于点为F.
如图,等边三角形ABC中,D、E分别为AB、BC边上的点,AD=BE,AE与CD交于点F,AG⊥CD于点G,
如图,等边三角形ABC中,D,E分别为AB,BC边上的两个动点,且总使AD=BE,AE与CD交与点F,AG⊥CD于点G