设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/15 17:06:54
设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是______.
由f(x)=x2-ax+a+3知f(0)=a+3,f(1)=4,
又存在x0∈R,使得f(x0)<0,
知△=a2-4(a+3)>0即a<-2或a>6,
另g(x)=ax-2a中恒过(2,0),
故由函数的图象知:
①若a=0时,f(x)=x2-ax+a+3=x2+3恒大于0,显然不成立.
②若a>0时,g(x0)<0⇔x0<2
a>0
f(2)<0⇒a>7
③若a<0时,g(x0)<0⇔x0>2
此时函数f(x)=x2-ax+a+3图象的对称轴x=
a
2<−1,
故函数在区间(
a
2,+∞)上为增函数
又∵f(1)=4,
∴f(x0)<0不成立.
故答案为:(7,+∞).
又存在x0∈R,使得f(x0)<0,
知△=a2-4(a+3)>0即a<-2或a>6,
另g(x)=ax-2a中恒过(2,0),
故由函数的图象知:
①若a=0时,f(x)=x2-ax+a+3=x2+3恒大于0,显然不成立.
②若a>0时,g(x0)<0⇔x0<2
a>0
f(2)<0⇒a>7
③若a<0时,g(x0)<0⇔x0>2
此时函数f(x)=x2-ax+a+3图象的对称轴x=
a
2<−1,
故函数在区间(
a
2,+∞)上为增函数
又∵f(1)=4,
∴f(x0)<0不成立.
故答案为:(7,+∞).
对于函数f(x)=ax^2+(b+1)x+b+1(a≠0),若存在x0∈R使f(x0)=x0,则称x0为f(x)的不动点
设函数f(x)=x^3,g(x)=-x^2+x-2/9a,若存在x0∈[-1,a/3](a>0)使得f(x0)
对于函数f(x),若存在x0属于R,使f(x0)=x0成立,则称x0为函数f(x)的不动点,已知函数f(x)=ax^2+
设函数f(x0=-1/x,g(x)=ax^2+bx(a.b属于R,a不等于0)若y=f(x)的图像与y=g(x)的图像有
对于函数f(x),若存在x0∈R,使得f(x0)=x0成立,则称x0为f(x)的天宫一号点.已知函数f(x)=ax2+(
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为函数f(x)的不动点;已知f(x)=x2+bx+c.
已知函数f(x)=1/x+alnx(a≠0,a∈R)若在区间[1,e]上至少存在一点x0,使得f(x0)<0成立,求实数
对于函数F(X),若存在X0<R,使F(X0)=X0成立,则称X0为F(X)的不动点,已知函数F(X)=AX∨2 +(B
对于函数f(x)=ax2+(b+1)x+b-2,(a≠0),若存在实数x0,使f(x0)=x0成立,则称x0为f(x)的
对于函数f(x)=ax2+(b+1)x+b-2(a≠0),若存在实数x0,使f(x0)=x0成立,则称x0为f(x)的不
对于函数f(x)=ax2+(b+1)x+b-2(a≠0),若存在实数x0,使f(x0)=x0成立,则称x0为f(x)的不
已知函数f(x)=ax(a大于0且a不等于1) 1.若f(x0)=3,求f(2x0) 2.若f(2x2-3x+1)大于f