设矩阵A=[2 -2 0 ; -2 1 - 2 ; 0 -2 0] 求正交矩阵T ,使TAT为对角矩阵 急
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 20:52:41
设矩阵A=[2 -2 0 ; -2 1 - 2 ; 0 -2 0] 求正交矩阵T ,使TAT为对角矩阵 急
|A-λE| =
2-λ -2 0
-2 1-λ -2
0 -2 -λ
r1+(1/2)(2-λ)r2 - r3
0 (1-λ)(2-λ)/2 -2(1-λ)
-2 1-λ -2
0 -2 -λ
第1行提出 (1-λ),再按第1列展开 = 2 乘
(2-λ)/2 -2
-2 -λ
2乘到第1行上
2-λ -4
-2 -λ
= λ^2 -2λ - 8 = (λ-4)(λ+2)
所以 |A-λE| =(1-λ)(λ-4)(λ+2)
特征值为 1,4,-2
A-E 化成行简化梯矩阵
1 0 1
0 1 1/2
0 0 0
特征向量为:(2,1,-2),单位化得 a1 = (2/3,1/3,-2/3)'
A-4E 化成行简化梯矩阵
1 0 -2
0 1 2
0 0 0
特征向量为:(2,-2,1),单位化得 a2 = (2/3,-2/3,1/3)'
A+2E 化成行简化梯矩阵
1 0 -1/2
0 1 -1
0 0 0
特征向量为:(1,2,2),单位化得 a3 = (1/3,2/3,2/3)'
则 P = (a1,a2,a3) 是正交矩阵
P^TAP = diag(1,4,-2)
2-λ -2 0
-2 1-λ -2
0 -2 -λ
r1+(1/2)(2-λ)r2 - r3
0 (1-λ)(2-λ)/2 -2(1-λ)
-2 1-λ -2
0 -2 -λ
第1行提出 (1-λ),再按第1列展开 = 2 乘
(2-λ)/2 -2
-2 -λ
2乘到第1行上
2-λ -4
-2 -λ
= λ^2 -2λ - 8 = (λ-4)(λ+2)
所以 |A-λE| =(1-λ)(λ-4)(λ+2)
特征值为 1,4,-2
A-E 化成行简化梯矩阵
1 0 1
0 1 1/2
0 0 0
特征向量为:(2,1,-2),单位化得 a1 = (2/3,1/3,-2/3)'
A-4E 化成行简化梯矩阵
1 0 -2
0 1 2
0 0 0
特征向量为:(2,-2,1),单位化得 a2 = (2/3,-2/3,1/3)'
A+2E 化成行简化梯矩阵
1 0 -1/2
0 1 -1
0 0 0
特征向量为:(1,2,2),单位化得 a3 = (1/3,2/3,2/3)'
则 P = (a1,a2,a3) 是正交矩阵
P^TAP = diag(1,4,-2)
设矩阵A=[2 -2 0 ; -2 1 - 2 ; 0 -2 0] 求正交矩阵T ,使TAT为对角矩阵 急
设实对称矩阵A=1 -2 0 -2 2 -2 0 -2 3 求正交矩阵P,使P^-1AP为对角矩阵.
设矩阵A=-2 1 1 ,1 -2 1 ,1 1 -2,求正交矩阵T使T-1AT=T'39;AT为对角矩阵.
设矩阵A=-2 1 1 1-2 1 1 1 -2,求正交矩阵T使T^-1AT=T'AT的对角矩阵
设矩阵A=[422;242;224],1、求矩阵A的所有特征值与特征向量;2、求正交矩阵P,使得P-1AP为对角矩阵.
设矩阵A= 2 -1 -1 -1 2 -1 -1 -1 2 ,求正交矩阵T使T的负一次方AT=T'AT为对角矩阵.
老师您好,已知0是矩阵A=[1,0,1;0,2,0;1,0,a]的特征值,求:a的值和正交矩阵P使P^-1AP为对角矩阵
对下列实对称矩阵A,求一个正交矩阵P,使P^-1AP=P^TAP=D为对角矩阵 2 0 0 0 -1 3 0 3 -1
请在这里概述您的问题对下列实对称矩阵A,求一个正交矩阵P,使P^-1AP=P^TAP=D为对角矩阵 2 1 0 1 3
已知A=(2 0 4 0 5 0 4 0 2) ,求一正交矩阵P,使p^1AP 成为对角矩阵.
设矩阵 1 -1 -1 A= -1 1 -1 求正交矩阵T 使 (T的-1次方)*AT=T'AT为对角矩阵.-1 -1
设矩阵A是 3 -2 -4 求正交矩阵P 使得P的转置乘以A再乘以P=对角矩阵.