已知函数f(x)=(ax^2+bx+c)e^x 且f(0)=1,f(1)=0
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 13:09:30
已知函数f(x)=(ax^2+bx+c)e^x 且f(0)=1,f(1)=0
(1)若f(x)在区间[0,1]上单调递减,求实数a的取值范围
(2)当a=0时,是否存在实数m使不等式2f(x)+4xe^x≥mx+1≥-x^2+4x+1对任意x∈R恒成立?若存在,求出m的值,若不存在,请说明理由
(1)若f(x)在区间[0,1]上单调递减,求实数a的取值范围
(2)当a=0时,是否存在实数m使不等式2f(x)+4xe^x≥mx+1≥-x^2+4x+1对任意x∈R恒成立?若存在,求出m的值,若不存在,请说明理由
已知函数f(x)=(ax^2+bx+c)e^x 且f(0)=1,f(1)=0
(1)若f(x)在区间[0,1]上单调递减,求实数a的取值范围
(2)当a=0时,是否存在实数m使不等式2f(x)+4xe^x≥mx+1≥-x^2+4x+1对任意x∈R恒成立?若存在,求出m的值,若不存在,请说明理由
(1)解析:∵函数f(x)=(ax^2+bx+c)e^x且f(0)=1,f(1)=0
∴f(0)=c=1,f(1)=(a+b+1)e=0==>a+b=-1
∵f(x)在区间[0,1]上单调递减
f(x)=(ax^2-(a+1)x+1)e^x==>f’(x)=(ax^2+(a-1)x-a)e^x
∴f’(0)=-aa>=0
f’(1)=(a-1)eax=0
此时,h’(0)=g’(0)=4
令m=4,满足题意不等式2f(x)+4xe^x≥4x+1≥-x^2+4x+1对任意x∈R恒成立
再问: 第一问是“单调”递减哦 ,你只求两个端点的导数值是不可以的吧 ?
再答: f(x)在区间[0,1]上单调递减是已知条件,求二个端点的导数值当然可以
(1)若f(x)在区间[0,1]上单调递减,求实数a的取值范围
(2)当a=0时,是否存在实数m使不等式2f(x)+4xe^x≥mx+1≥-x^2+4x+1对任意x∈R恒成立?若存在,求出m的值,若不存在,请说明理由
(1)解析:∵函数f(x)=(ax^2+bx+c)e^x且f(0)=1,f(1)=0
∴f(0)=c=1,f(1)=(a+b+1)e=0==>a+b=-1
∵f(x)在区间[0,1]上单调递减
f(x)=(ax^2-(a+1)x+1)e^x==>f’(x)=(ax^2+(a-1)x-a)e^x
∴f’(0)=-aa>=0
f’(1)=(a-1)eax=0
此时,h’(0)=g’(0)=4
令m=4,满足题意不等式2f(x)+4xe^x≥4x+1≥-x^2+4x+1对任意x∈R恒成立
再问: 第一问是“单调”递减哦 ,你只求两个端点的导数值是不可以的吧 ?
再答: f(x)在区间[0,1]上单调递减是已知条件,求二个端点的导数值当然可以
已知函数f(x)=(ax^2+bx+c)e^x 且f(0)=1,f(1)=0
已知函数f(x)=ax方+bx+c,且f(0)=0,f(x+1)-f(x)=x+1,求f(x)的值域
设函数f(x)=ax^2+bx+c((a≠0),满足f(x+1)=f(-x-3),且f(-2)>f(2),解不等式f(-
已知f(x)=ax^2+bx+c,若f(0)=0,且f(x+1)=f(x)+x+1求f(x)的表达式
已知f(x)=ax^2+bx+c.若f(0)=0,且f(x+1)=f(x)+x+1,求f(x)
已知函数f(x)=x³ +ax² +bx +c,g(x)=12x-4,若f(-1)=0,且f(x)
1.已知 f(x)=ax²+bx+c,若 f(0)=0,且 f(x+1)=f(x)+x+1 ,试求 f(x)
已知函数f(x)=e^x+ax^2+bx.设函数f(x)在点(t,f(t))(0
已知函数f(x)=ax^2+bx+c(a≠0)满足f(0)=0,对于任意x∈R都有f(x)≥x,且f(-1/2+x)=f
已知函数f(x)=ax的平方+bx+c,若f(0)=0,且f(x+1)=f(x)+2x+1,试求f(x)的表达式
已知二次函数f(x)=ax^2+bx+c,若f(0)=0,且f(x+1)=f(x)+x+1,则f(x)的解析式为——
已知x=1是函数f(x)=(x^2+ax)e^x,x>0和bx ,x