作业帮 > 数学 > 作业

求解一矩阵证明题..证明不存在三阶复矩阵A,使得AA=B,其中B为三阶矩阵,方阵的右上方三个元素不为0,且其他元素为0.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 19:16:22
求解一矩阵证明题..
证明不存在三阶复矩阵A,使得AA=B,其中B为三阶矩阵,方阵的右上方三个元素不为0,且其他元素为0.即i>=j时b(ij)=0,i
求解一矩阵证明题..证明不存在三阶复矩阵A,使得AA=B,其中B为三阶矩阵,方阵的右上方三个元素不为0,且其他元素为0.
反证法,若存在A,有A^2=B.注意到B^2≠0,但B^3=0.从而有A^4≠0,但A^6=0.但这是不可能的.因为A^6为0矩阵说明X^6是A的零化多项式,又由于A是3阶的,故X^3也必定是A的零化多项式,也即A^3=0,从而A^4一定为0,矛盾.