作业帮 > 数学 > 作业

若f(x)=∫(1~x^2)e^(-t^2)dt(积分区间为1到x^2),计算定积分∫xf(x)dx积分区间为0到1

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 17:10:54
若f(x)=∫(1~x^2)e^(-t^2)dt(积分区间为1到x^2),计算定积分∫xf(x)dx积分区间为0到1
若f(x)=∫(1~x^2)e^(-t^2)dt(积分区间为1到x^2),计算定积分∫xf(x)dx积分区间为0到1
f'(x)=2xe∧-x^4
原式=1/2x^2f(x)(0~1)-∫(0~1)1/2x^2f'(x)dx
(分部积分法)
=1/2x^2f(x)(0~1) 1/4e^-x∧4(0~1)
(当x取0或1时)1/2xf(x)=0所以
原式=1/4e-x^4(0~1)=(e^-1-1)/4