un收敛求证an^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:17:46
果断收敛啦用比较判别法很容易得出结论的
若正项级数un收敛,则un收敛到0,即存在N,当n>N时,un
这个题很经典的,用基本不等式就可以做.省去下标∑an/n=∑(1/n)*a_n
用比较判别法证明.经济数学团队帮你解答.请及时评价.
利用均值不等式可得an/n小于等于(an^2+1/(n^2))/2,而级数an^2和级数1/(n^2)均收敛,所以由比较原则,级数an/n收敛.用手机打出来的,希望你能看懂,关于级数1/(n^p)当p
(un+vn)^2=(un)^2+2unvn+(vn)^2《(un)^2+2|unvn|+(vn)^2《2[(un)^2+(vn)^2]级数∑(un)^2∑(vn)^2都收敛,所以级数2[(un)^2
正项级数Sn-S(n-1)=un>0,即Sn>S(n-1),所以un/Sn^2
(an+bn)^2
算术几何均值不等式:|an|/n
先证an有界猜想an
看错题目了.Un=(-1)^n即可,|Un|->1,但是Un发散
由于当n趋于无穷时,un趋于0,vn趋于0,因此当n充分大时有0
你有问题也可以在这里向我提问:
参考例题:证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛答案:∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛
显然有An>0A(n+1)=√(2+an)=>[A(n+1)]^2=2+An=>[A(n+1)-2][A(n+1)+2]=An-2其中:An>0=>A(n+1)+2>0=>A(n+1)-2与An-2同
发散un→0un^2-un+1/2→1/2根据级数收敛的必要条件,级数∑(un^2-un+1/2)发散再问:那个是平方-平方您这个后面怎么变成除以二了呢再答:你好歹也要加个括号吧再问:嗯再答:Sn=u
这是错的.比如Un=1/n
稍等,给你上个图.
只要举出反例即可.令U(n)=(-1)^n/ln(n+1)(+1是为了保证n=1时有意义),则U(n)是趋于零的交错数列,所以由Leibnitz判别法知∑U(n)收敛.(-1)^n*U(n)/n=1/
都不收敛.(1)un=(-1)^n/n∑Un收敛,∑U2n发散(2)取奇数项全为1,∑u2n收敛,∑Un发散再问:如果把∑U2n换成,∑(U2n-1+U2n)呢?再答:收敛再问:还有刚刚对于第二个问题