已知△abc是等边三角形,点d,e分别在边ab,ac上,且ad=ce
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:01:32
△DEF是等边三角形理由:∵△ABC是等边三角形∴AB=BC=AC,∠A=∠B=∠C=60°∵AD=BE=CF∴AB-AD=BC-BE=AC-CF即BD=CE=AF∵BE=CF=AD,∠B=∠C=∠A
1)连AD,等边三角形ABC面积=4√3,等边三角形ABC面积=三角形ABD面积+三角形ACD面积=(1/2)AB*DE+(1/2)AC*DF=2DE+2DF=2√3+2DF=4√3,所以DF=√32
∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF
解题思路:(1)根据等边三角形的性质证明△ABE≌△CAD就可以得出结论;(2)由三角形全等可以得出∠ABE=∠CAD,由外角与内角的关系就可以得出结论.解题过程:如图,已知△ABC为等边三角形,点D
已知:△ABC为等边三角形,∴AB=BC=CA,∠A=∠B=∠C=60°.已知:AF=BD=CE,∴FB=DC=EA.在△AFE和△BDF和△CED中,FB=DC=EA,AF=BD=CE,∠A=∠B=
1,在△ACD,△CBF中CD=BF∠C=∠B=60°AC=BC∴△ACD≌△CBF(SAS)2,当D在线段BC上的中点时,四边形CDEF为平行四边形,且角DEF=30度按上述条件作图连结BE,EF在
因为BD=CE,△ABC为正△所以AB=AC,∠A=60°所以AD=AE,∠A=60°所以△ADE正三角形
∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF
证明因为三角形ABC是等边三角形所以角A=角B=角C=60度因为DE平行BC所以角ADE=角ABC=60度(两直线平行,同位角相等)角AED=角ACB=60度(两直线平行,同位角相等)得角A=角ADE
∵△ABC是等边三角形∴BC=AB∠C=∠ABC=60º在△BCE和△ABD中CE=BD∠C=∠ABDBC=AB∴△BCE≌△ABD(SAS)∴∠CBE=∠BAD∵∠ABC=60º
答:∵△ABC是等边三角形∴∠A=∠B=∠C∵AD=BE=CF,即AF=CE=BD∴△ADF≌△BED≌△CFE(边角边)∴在△DEF中DE=EF=FD所以△DEF为等边三角形(边边边)
(1)证明:∵△ABC是等边三角形且DG∥BC∴△AGD为等边三角形∴AD=AG=GD∠BAD=∠EAG=60又DE=DC∴DE+GD=DC+AD=AB∴AB=GE∴△AGE≌△DAB(2)∵△AGE
简单可证三角形ABD与ACE全等,角ACE为60度,则角BCF为120度,同旁内角可证,BF//CE,可证平行四边形.BD=DC,BD=EC,BD=EF,BF=1/2AB,中位线,故BC=2FG
证明:(1)∵AB=BC,∠ABD=∠C=60°,BD=CE∴△ABD≌△BCE(2)由(1)△ABD≌△BCE得∠BAD=∠CBE∠FAE=60°-∠BAD=60°-∠CBE=∠ABE∠AFE=∠A
因为△ABC是等边三角形,所以BD既是中线,有是角平分线,所以∠DBC=30°.而∠ACB=60°,CE=CD,故△DCE是等腰三角形.所以∠DCE=30°,即∠DBC=∠DEC,所以△DBE是等腰三
∵CE//AB∴∠ECD=∠ABC=60∵∠ACB=60∴∠ACB=∠DCE∴∠BCE=∠ACDBC=AC∠EBC=∠ACD∴△BCE≌△ACDCD=CE∵∠ECD=60∴△DCE是等边三角形
∵DE//BC.∴∠ADE=∠B=60°∠AED=∠C=60°所以:△ADE是等边三角形.
延长AD至E交BC于E∵△ABC为等边三角形∴AB=AC=BC=1在△ABD与△ACD中,AB=ACBD=CDAD=AD∴△ABD全等于△ACD(SSS)∴∠BAD=∠CAD=二分之一∠BAC=30°
第一题:1.第二题:30度或150度.
延长NC至E使BM=CEMBD全等于DCE(SAS)BM=CE角ABD=角DCE=90°DB=DC所以DE=DM角NDE=角MDN=60°MND全等于EDN(SAS)DN=DN角NDE=角MDNDE=