设有n阶矩阵a与b 证明
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 10:00:50
a[i][j]=a[j][i]b[i][j]=b[j][i]a+b=c则c[i][j]=a[i][j]+b[i][j]=a[j][i]+b[j][i]=c[j][i]所以c是对称矩阵,也就是a+b是对
证明(AB)是可逆矩阵?没弄错么这样就不是方阵了何来可逆.再问:我下面写了第二行是BA啊再答:AB列变换A-BB行变换A-BBBAB-AA0A+B所以其行列式为|A-B||A+B|A+B与A-B均为可
最后是证明行列式为0,不是证明矩阵乘积为0.反证法:若A-B和A+B都非奇异,则(A-B)^T(A+B)=A^TA-B^TA+A^TB-B^TB=A^TB-B^TA是非奇异阵,但A^TB-B^TA是奇
A的第i行乘-1等于第i列乘-1,故对角线以外的元素均为0A的第i,j行互换等于第i,j列互换,故对角线上元素相等.
证明:由A可逆,有A^-1(AB)A=BA所以AB与BA相似.
转置符号用'代替说明首先,第一步(A+B)’=A‘+B’=A+B所以A+B是对称矩阵其次,任取x≠0根据正定定义x‘Ax>0.x‘Bx>0.于是x’(A+B)x=x‘Ax+x‘Bx>0所以A+B是正定
很是正常,因为在这个世界上,权倾一时炙手可热者太多,其无限风光让人望之兴叹;腰缠万贯富甲一方者甚众,其富豪做派可望而不可及;帅男靓女花容月貌倾国倾城者如过江之鲫,其知名度影响力与常人不可同日而语;这些
他说的是特征多项式相等!没有说矩阵相等!你可以看看特征多项式的定义:一个方阵X的特征多项式f(λ)就是|X-λE|.那么命题是完全正确的!您可能有些概念混淆了.首先行列式就是行列式,您在这里说的“行列
这个就按照合同的定义和脱衣原则就可以证明.A=P'diagP,其中diag是对角阵,P是可逆矩阵,这是合同的定义.那么A'=(P'diagP)'=P'diagP,第二个等号就是脱衣原则.就是去括号后从
再问:那俩箭头啥意思再答:这都不知道,充分性、必要性这里只是提供思路,书写是不规范的,将就着看吧再问:哦,谢谢再答:不客气
先对A是对角阵的情形进行证明再把一般的情形归结为上面的特殊情形
这是基本结论,可由定义证明.经济数学团队帮你解答.请及时评价.
数学归纳法试试.令AB为m*n和m1*n1阶矩阵,分别计算,然后再令他们为(m+1)*(n+1)和(m1+1)*(n1+1)阶矩阵.
设X为任意列向量X'(A+B)X=X'AX+X'BX>0所以A+B为正定矩阵
因为A,B都是实对称矩阵,故他们都可以对角化.B他们有相同的特征值他们的特征多项式相同右边.
ab=ba可以得到a和b可以同时上三角化,然后就显然了再问:能不能说得再详细一点,高代是自学的,没上过课,学得不太好再答:先去看这个问题http://zhidao.baidu.com/question
1.因为若A与B都是n阶正交矩阵所以AA'=A'A=E,BB'=B'B=E所以(AB)'(AB)=B'A'AB=B'B=E所以AB是正交矩阵.2.因为(A+A')'=A'+(A')'=A'+A=A+A
因矩阵A与B相似,则存在满秩矩阵Q,使A=Q^(-1)BQ→QA=BQ设QA=BQ=R→A=Q^(-1)R,B=RQ^(-1)把Q^(-1)看成Q即可
一般有(AB)^2=ABAB(A-B)^2=A^2-AB-BA+B^2(A+B)(A-B)=A^2-AB+BA-B^2(A-B)(A+B)=A^2+AB-BA-B^2如果A与B可交换,上列结论可写为(