设L是曲线x^2 y^2=4,则闭合∫ds=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 16:01:50
x^2+y^2=4x==>(x-2)^2+y^2=4若L是逆时针的话∫L(x^2+y)dx+(2x-y^2)dy=∫∫D[(2)-(1)]dxdy=∫∫Ddxdy=4π若L是顺时针==>∫L(x^2+
简单的很,因为是曲线积分,所以可以将曲线方程带入化简积分函数,带入后可以把积分函数中3x^2+4y^2一项消去,得到了∫L(12+2xy)ds吧?因为由曲线方程同时乘以12得到的积分函数中的一项……对
设C是由曲线y³=x²与直线y=x连接起来的正向闭曲线,计算∮x²ydx+y²dy的曲线积分C:y=x^(2/3),y=x;区域D:由曲线C所围的区域;P=x&
√[(x-1)^2+(y-1)^2]就是圆上一点到(1,1)的距离圆心(0,-4)到(1,1)距离=√[(0-1)^2+(-4-1)^2]=√26半径是2所以最大值=√26+r=√26+2请采纳,【学
令k=y/xy=kx代入x^2+k^2x^2+4x+3=0(k^2+1)x^2+4x+3=0二次项系数大于0所以是二次方程这个关于x的方程有解则判别式大于等于所以16-12(k^2+1)>=0k^2
曲线方程配方得:(x-1)²+(y-2)²=5,它表示半径为根号5的圆.所以|AB|的最大值是圆的直径2根号5
格林公式要求被积函数P,Q在区域内连续,而且一届偏导数也要连续.L围成的区域D包含原点,显然连续性是不满足的.所以不能用Green公式.但是把原点挖掉后,就连续了.所有可以以原点为圆心做一个充分小的圆
曲线y=lnx导数方程为y'=1/x,因直线y=2x+b是曲线y=lnx的一条切线,则y'=1/x=2;设切点为(x1,lnx1),则y'=1/x1=2,x1=1/2.将(x1,lnx1)代入y=2x
设L方程式Y=AX平方+bX+C因为过1,0所以a+b+c=0切线的斜率是k=1+(2y+1)/x能得到y’=1+(2y+1)/x由于y'=2ax+b所以1+(2y+1)/x=2ax+b所以b=1和(
x²+y²-2x-4y=0(x²-2x+1)+(y²-4y+4)-5=0(x-1)²+(y-2)²=5是一个园,半径是√5所以最大值是2√5
首先得推导一个重要中点的公式y=-b^2*x/a^2*k设A(x1,y1)B(x2,y2)C(x,y)这里M是AB中点x(1)^2/a^2+y(1)^2/b^2=1①x(2)^2/a^2+y(2)^2
1.f(x)'=a-1/(x+b)^2f(2)'=a-1/(2+b)^2=0a、b是整数,所以1/(2+b)^2=1,否则不可能满足题意所以b+2=+-1,b=-1或b=-3a=1,又f(2)=3,所
直线AB的方程为y=1-x也即x+y=1故∫L(x+y)ds=∫L1ds=∫Lds=|AB|=√[(-1-1)^2+(2-0)^2]=2√2
你确定题目没有问题?再问:再答:我就说嘛,选B,L上,x+y=1,所以,转化为1的积分,于是,直接求线段长度即可。再问:老师再问一个问题再问:老师是应用题的第二题谢谢再问:
∫(x^2+y^2)ds=∫9ds=9*2π*3=54π曲线积分可以用曲线方程化简被积分函数;被积函数为1,积分结果为曲线弧长,即圆周长选择题没有这个答案就是题错了.
∫(x^2-y^2)dx=∫0~2(x^2-x^4)dx=-56\15如果是∫(x^2-y^2)dL=∫0~2(x^2-x^4)√(1+4x^2)dx这里的区别就是dx和dl,做题目的时候要看清楚呀.
用格林公式将一个封闭曲线上的线积分化为在此封闭区域内的面积分∫L(x²+y)dx+(x-y²)dy=(在曲线L围成的封闭区域上积分)∫∫{[∂(x-y²)/&
既然是求闭曲线积分,就用格林公式化为二重积分那个负号应该是题目打印有误,如果是负的,曲线积分转化为二重积分∫∫(-x)dxdy由于积分区域是圆x^2+y^2=9,关于y轴对称,所以∫∫(-x)dxdy