作业帮 > 数学 > 作业

计算曲线积分 ∫(x^2-y^2)dx,其中l是曲线y=x^2上从点(0,0)到点(2,4)的一段弧

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 13:30:25
计算曲线积分 ∫(x^2-y^2)dx,其中l是曲线y=x^2上从点(0,0)到点(2,4)的一段弧
∫l(x^2-y^2)dx,其中l是曲线y=x^2上从点(0,0)到点(2,4)的一段弧
练习册给的答案是∫0~2(x^2-x^4)dx=-56\15
我用公式做是∫0~2(x^2-x^4)√(1+4x^2)dx
为什么答案没有√(1+y'^2)
计算曲线积分 ∫(x^2-y^2)dx,其中l是曲线y=x^2上从点(0,0)到点(2,4)的一段弧
∫(x^2-y^2)dx=∫0~2(x^2-x^4)dx=-56\15
如果是 ∫(x^2-y^2)dL=∫0~2(x^2-x^4)√(1+4x^2)dx
这里的区别就是dx和dl,做题目的时候要看清楚呀.
再问: 不好意思,题我写错了,题目的∫(x^2-y^2)dx应该是∫l(x^2-y^2)dx, 我觉得练习册答案有问题
再答: 这样啊,那么我赞同你的观点,答案是错误的。