设a是三维列向量,a^T是a的转置,若aa^T=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 11:07:02
用正交阵定义验证.经济数学团队帮你解答.请及时评价.
这个应该是有条件的!如果矩阵A的秩
改写为A(a1a2a3)=(a1a2a3)B的形式,矩阵A,B有相同的特征值
A(a1,a2,a3)=(a1,a2,a3)KK=10201222-1所以|A||a1,a2,a3|=|a1,a2,a3||K|.由a1,a2,a3线性无关,所以|a1,a2,a3|≠0.所以|A|=
先证CX=0与AX=0同解.一方面,显然AX=0的解是CX=BAX=0的解.另一方面,设X1是CX=0的解,则CX1=0.所以(BA)X1=0所以B(AX1)=0因为B列满秩,所以有AX1=0.即X1
1+xa≠0,可以知道aa'(a‘表示转置)也不会为0,而r(aa')<=r(a)<=1这说明aa‘的秩为1.这样aa'的特征值正好是n-1个0,有一个不
(1)AB=tb-a,AC=1/3(b)-2/3(a)A、B、C三点共线AB=xACtb-a=1/3*x(b)-2/3*x(a)t=1/3*x2/3*x=1t=1/2(2)|a-xb|^2=a^2+x
H^TH=(E-2aa^t)^T(E-2aa^t)=(E-2aa^t)(E-2aa^t)=E-2aa^t-2aa^t+4aa^taa^t=E-4aa^t+4a(a^ta)a^t=E-4aa^t+4aa
R(A)=n-1,首先可以确定,A的基础解系所含的解向量个数是n-(n-1)=1个那么就很简单了,找一个向量,代入AX=0可以使之成立就行了.利用题目的暗示,这个向量可能是a我们试一试代入AX=0(E
正交阵的特征值的模都是1,因此有a^2+b^2=1.设T的第三个特征值是x,则1=|T|=(a+bi)*(a-bi)*x=x,于是x=1,tr(T)=1+a+bi+a-bi=1+2a.正交阵的列向量组
|4a1,2a1-3a2,a3|=|4a1,2a1,a3|-|4a1,3a2,a3|【第一个行列式有两行成比例,所以行列式为0】=0-|4a1,3a2,a3|=-4×3|a1,a2,a3|=-12|A
A·[1,1,……,1]T第i个数=ai1+ai2+.+ain=ki=1,.,n即A[1,1,……,1]T=[k,k,……,k]T而k[1,1,……,1]T=[k,k,……,k]T所以k是A的一个特征
u^2=a^2+t^2*b^2+2t*(ab)看成关于t的一元二次函数,因为t是实数,(1)当|u|取得最小值时,实数t=-(a•b)/b^2,(2)由(1)得b•(a+tb)
知识点:1r(A+B)
∵|B|=|α1β2α2|=2∴|α1α2β2|=-2∵|A|=|α1α2β1|=5∴|C|=|2α14α2-3α1β1+β2|=2|α14α2-3α1β1+β2|=2|α14α2β1+β2|=8|α
a^Ta=(E-2aa^t)^T(E-2aa^t)=(E-2aa^t)(E-2aa^t)=E-2aa^t-2aa^t+4aa^taa^t=E-4aa^t+4a(a^ta)a^t=E-4aa^t+4aa
1对的2对的,如果b和c共线,就不满足了,但题目给了限定:b和c不共线3对的,根据给出的b和u,可以先求出单位向量c,再确定λ但如果先确定λ,c就不好找了,例如:a=(3,1),b=(1,0),u=2
aa^T的每一列都可以用a表示,秩当然不超过1
A=XY(T)A^2=XY(T)XY(T)=X[Y(T)X]Y(T)X,Y都是n*1的列向量,那么Y(T)就是1*n行向量,那么Y(T)X就是一个数,由于X,Y是正交的,那么Y(T)X=0A^2=0设