设A.B均是N阶正定矩阵,且AB=BA,证明:AB也是正定矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 02:32:38
必要性:若A,B半正定,则存在C使得B=CC^T,那么tr(AB)=tr(ACC^T)=tr(C^TAC)>=0充分性:反证法,若A不是半正定的,则至少有一个负特征值λ再问:您好,我还想弱弱地问一下t
正定则顺序主子式都大于0所以|A|≠0,|B|≠0所以|AB|=|A||B|≠0所以AB可逆所以(C)正确.再问:这样呀,那其它答案为什么不正确,或者为什么不能确定呢?
终于看明白了,稍等啊再问:则B必为()然后四个选项ABCD选哪个?不好意思括号没打再答:矩阵A是正定矩阵,则它一定是可逆矩阵,与可逆矩阵相似的矩阵一定也是可逆矩阵。故选C.与实对称矩阵相似的矩阵未必是
证明:因为A,B正定,所以A^T=A,B^T=B(必要性)因为AB正定,所以(AB)^T=AB所以BA=B^TA^T=(AB)^T=AB.(充分性)因为AB=BA所以(AB)^T=B^TA^T=BA=
因为A正定,所以存在可逆阵C,使得A=C^TC而AB=C^TCB=C^T(CBC^(-1))C所以AB与CBC^-1合同.所以有AB正定CBC^-1正定CBC^-1的特征值都大于0B的特征值都大于0
OK 这个有图片 请点击看大图
转置符号用'代替说明首先,第一步(A+B)’=A‘+B’=A+B所以A+B是对称矩阵其次,任取x≠0根据正定定义x‘Ax>0.x‘Bx>0.于是x’(A+B)x=x‘Ax+x‘Bx>0所以A+B是正定
首先,由A正定,存在正定矩阵C使A=C².这个用可对角化证明:由A为实对称阵,存在正交阵T使T^(-1)AT为对角阵.又A正定,故T^(-1)AT的对角线上均为正数(特征值>0).故存在对角
首先需要说明kA+lB是对称的,这是因为(kA+lB)'=kA'+lB'=kA+lB,然后对于任意的x不等于0,有x'(kA+lB)x=kx'Ax+lx'Bx>0(因为A,B均正定),得证.
首先证明任取n维列向量x≠0,Bx≠0因为R(B)=n,所以存在B的n级子式不为0,不妨设B前n行构成的子式|B1|不为0,则若B1x=0必有x=0,矛盾.所以B1x≠0,所以Bx≠0.这样因为A正定
前两天看你问过,一个人答了,估计没看懂,我也没看懂,我就用比较浅显的知识给你证明吧,高深的我也不会.哈哈!
这是基本结论,可由定义证明.经济数学团队帮你解答.请及时评价.
设X为任意列向量X'(A+B)X=X'AX+X'BX>0所以A+B为正定矩阵
任取非零向量α=(α1,α2,...αn),存在非零向量β=(β1,β2...βn),使得α'β=I,则有β'α=I因为A-B正定,则有α(A-B)α'>0,则αAα'>αBα'由A,B正定得A逆,B
这个(C)正确因为A,B正定所以|A|>0,|B|>0所以|AB|=|A||B|>0所以AB可逆.
这个证明很容易,AB为n阶实对称阵,均可对角化.设A的特征值为λ1,λ2,λ3.λn,其中λi均>0(A是正交矩阵,特征值均大于0)另设B的特征值为λ1‘,λ2’,λ3‘.λn’tA+B的特征值φ(λ
1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值
充分性:若Ax=0和Bx=0没有非零公共解,那么任取非零向量x,x'Ax和x'Bx不同时为零,必有x'Ax+x'Bx>0,即A+B正定.必要性:若A+B正定,假定Ax=0和Bx=0有公共的非零解x,那
证明B是m阶实对称矩阵,则B特征值均为正式实数,且对任意m维向量x,0b1x'x-(b1/am)×amx'x>0,故B-HAH'成为正定矩阵.