若双曲线y² 12²-x² 5²=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:56:32
渐近线方程是X+Y=0,说明双曲线中a=b因此c=√2a,离心率=c/a=√2
∵双曲线的渐近线方程为2x±3y=0,∴设双曲线的标准方程为(2x+3y)(2x-3y)=λ(λ≠0),即4x2-9y2=λ,①当λ>0时,化成标准方程为x2λ4-y2λ9=1,∵双曲线的焦距是23,
首先由题知;2B=3A(当然你要设一个双曲线的基本方程x平方/a平方-y平方/b平方=1)再令a=3t则b=2t代入设的标准方程后得x平方/9t平方-y平方/4t平方=1再代入题目中给的那个点就得到方
解题思路:先化简双曲线方程,再代入直线方程,化简求解,即可解题过程:
已知渐近方程移项得2x=3y平方得4x方=9y方所以可设双曲线方程为x方比9入-y方比4入=1再根据已知点P可求入=负三分之一所以双曲线方程为3y方比4-x方比3=1
选B.因为,双曲线上的点到左焦点的距离和到左准线的距离之比等于双曲线的离心率e,已知,双曲线X²/4-Y²/5=1中,a²=4,b²=5,c²=a
证明:如图,MF为直径的圆,圆心是N(MF的中点),半径是(1/2)|MF|双曲线的实轴为直径的圆,圆心是O,半径是a则圆心距ON=(1/2)|MF'|=(1/2)|MF|+a即圆心距等于半径
∵点A(a,b)在双曲线y=12x上,∴b=12a,∴ab=12;∵A、B两点关于y轴对称,∴B(-a,b),∵点B在直线y=x+3上,∴b=-a+3,∴a+b=3,∴ab+ba=a2+b2ab=(a
解题思路:双曲线的定义解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.
面积是2,设a点的为x1,b为x2,所以y1=5/x1,y2=7/x2,面积为5/x1*(x2-x1),再利用AB平行于x轴,则5/x1=7/x2,可以得出x1/x2的值,你算算看
对于双曲线x²/a²-y²/b²=1,渐近线方程为:y=±(b/a)x;把√3x-y+2=0移项整理得y=√3x+2;双曲线渐近线方程与y=√3x+2平行,两直
x²/(m²+12)-y²/(4-m²)=1c²=m²+12+4-m²=16焦距=2c=8再问:难道与m的值无关吗?再答:无,在计
解题思路:考查了双曲线的第二定义,以及双曲线的离心率的范围。解题过程:
(1)∵双曲线的一条渐近线方程是x-2y=0∴可设双曲线的标准方程为:x^2/(4b^2)-y^2/b^2=1∵双曲线经过点M(2根号5,1)∴(2根号5)^2/(4b^2)-1^2/b^2=1,∴解
∵M、N关于y轴对称的点,∴纵坐标相同,横坐标互为相反数∴点M坐标为(a,b),点N坐标为(-a,b),∴b=12a,ab=12;b=-a+3,a+b=3,则抛物线y=-abx2+(a+b)x=-12
根据题意,双曲线C的一条渐近线方程为x-2y=0,则可设双曲线的方程为x2-4y2=λ(λ≠0),将点M(25,1),代入,得(25)2-4×12=λ,可得λ=16,故此双曲线的标准方程为:x216−
解题思路:椭圆解题过程:你好,椭圆方程没有写完整,请你写好以继续讨论的形式发上来,老师再给你解答。最终答案:略
由方程组:3x-4y-2=0,3x+4y-10=0,解得中心O′(2,1).平移坐标轴,将原点移到O′(2,1),则原坐标与新坐标之间的关系为:x=x′+2,y=y′+1.在新坐标系x′o′y′下,双