矩阵A B=AB的可逆性判断
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:27:59
据我所知AB=BA并没有什么本质不同的充要条件.当然,有一个必要条件是A和B在(其代数闭包内)可以同时相似上三角化.楼上的讲法显然是错误的,比如取A是单位阵,B是非退化Jordan块.再问:555我刚
证明:因为A,B正定,所以A^T=A,B^T=B(必要性)因为AB正定,所以(AB)^T=AB所以BA=B^TA^T=(AB)^T=AB.(充分性)因为AB=BA所以(AB)^T=B^TA^T=BA=
矩阵满足AB=BA,就称A,b是可交换的.除了特殊的几个结论外(如,A^2与A可交换),没有什么一般的条件.
不对.例如001-1A=11B=-11
奇怪!不对.只有A是列满秩时才有此结论.
不正确.矩阵的乘法是有零因子的,即由AB=0不能得出A=0或B=0答案中的证明是用了命题:若同阶方阵A,B满足AB=E,则A可逆,且A^-1=B.这样你应该懂了吧
AB是对称矩阵(AB)'=ABB'A'=AB你的前提条件不足,A,B应该是对称矩阵,这样就有BA=AB
证明:因为A,B正定,所以A^T=A,B^T=B(必要性)因为AB正定,所以(AB)^T=AB所以BA=B^TA^T=(AB)^T=AB.(充分性)因为AB=BA所以(AB)^T=B^TA^T=BA=
显然是错的,如果A,B不是方阵,行列式都不存在如果都是方阵的话也只能说明有一个是缺秩的
设A=﹙aij﹚B=﹙bij﹚tr﹙AB﹚=∑[1≤i≤n]∑[1≤j≤n]aij×bjitr﹙BA﹚=∑[1≤i≤n]∑[1≤j≤n]bij×aji[把字母i,j对换]=∑[1≤j≤n]∑[1≤i≤
由于秩相等,所以值域维数相等.又由于值域有包含关系,所以值域就一样了.再问:我知道A的值域一定包含AB的值域,请问如何证AB的值域包含A的值域?再答:由于秩相等啊,这样值域的维数都等于秩。包含关系+维
充分性:因为AB=BA,所以(AB)'=B'A'=BA=AB,从而AB是对称矩阵必要性:因为AB为对称矩阵,所以AB=(AB)'=B'A'=BA再问:在必要性中,(AB)'怎么=(BA)'的再答:AB
令AB=CA^(-1)=B*C^(-1)C^(-1)=(1,-1,0;0,1,0;0,0,1)接下来自己算一下吧^_^
我来分析一下:|AB|≠0,即AB可逆,(把AB做为整体)这样R(ABC)=R(C)或R(CAB)=R(C)其他的都不确定 见公式里的第四条
证明:必要性由于A,B都是n阶正定矩阵,根据正定矩阵的定义,A,B都是n阶对称矩阵,即A'=A,B'=B(这里A'表示A的转置矩阵).若AB正定,则AB也是对称矩阵,从而AB=(AB)'=B'A'=B
设B=abcd由AB=BA得[a,b][a+2b,b][2a+c,2b+d]=[c+2d,d]所以有a=a+2b2a+c=c+2d2b+d=d解得:b=0,a=d所以,满足AB=BA的矩阵为:a0ca
不是矩阵和行列式是两个概念行列式是值和代数式矩阵是数量关系表再问:为什么矩阵AB=0,可以推出A的行列式=0或者B的行列式=0再答:不对吧A=-11B=11AB=0但不可以推出A的行列式=0或者B的行
A是m*n型阵B中n*s型阵如果r(A)=r已知那么B中的列向量就是方程组AX=0的解.那么B的列秩不会超过n-R(A),即R(B)
这个很简单就是考定义(AB)的n次方=AB·AB·AB········AB(共乘以n次)∵AB=BA∴(AB)的n次方=ABABAB········AB=A·A·A·A······B·B·B·B·B·
有公式|AB|=|A||B|这里|A|和|B|都是数了,所以可以用数的乘法交换率|A||B|=|B||A|=|BA|所以相等